Skip to main content

Oxidized DNA Base Damage Repair and Transcription

A New Mechanism for Regulation of Gene Expression in Cancer

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

The DNA bases in the genome are susceptible to oxidation by reactive oxygen species (ROS). The oxidized DNA base lesions such as 8-oxoguanine (8-oxoG) and thymine glycol are primarily repaired by the base excision repair (BER) pathway. Increasing pieces of evidence suggest that oxidative stress-induced base damages in the gene promoter serve as epigenetics marks to regulate gene expression by recruitment of BER proteins. To shed light on this novel role of oxidative DNA base modifications and BER proteins, in this chapter, we focus on how controlled guanine oxidation in gene promoters and BER proteins 8-oxoguanine DNA glycosylase (OGG1) and AP-endonuclease 1 (APE1) regulate expression of multiple genes that drive cancer progression and metastases. Further, we highlight the current studies suggesting a novel role of 8-oxoG and BER in regulating the formation of noncanonical DNA secondary structures such as G-quadruplexes (G4s) to regulate gene expression. Since high oxidative stress in tumor cells creates selective pressure on DNA damage repair pathways to maintain sustained growth, invasion, and metastases via modulating gene expression, such efforts to address the intertwined roles of DNA base modification, BER pathway, and gene expression could broaden cancer-therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor K. Bhakat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pramanik, S., Roychoudhury, S., Bhakat, K.K. (2022). Oxidized DNA Base Damage Repair and Transcription. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_156

Download citation

Publish with us

Policies and ethics