Skip to main content

Phytoestrogens Modulate Oxidative Stress

Cancer Prevention and Treatment

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

The development of prevention strategies and more efficient cancer therapies has been the main focus of the scientific community for the last decades. Phytoestrogens are natural compounds that can be found in more than 300 plants. They are characterized by having a close structural similarity to estrogens, which allow them to bind both estrogen receptors (ER), ERα and ERβ, and harbor weak estrogenic activity. Phytoestrogens have been described as modulators of oxidative stress, and their role in cancer prevention has been well documented, although their impact on treatment efficiency is controversial. Most anticancer treatments target mitochondria, diminishing mitochondrial functionality and increasing reactive oxygen species (ROS) production. Since phytoestrogens may interfere with redox homeostasis, they could be an important factor to consider for cancer therapy. In this chapter, we focus on this controversy and have studied the recent research in this area with the objective to find evidence for the role of phytoestrogens in cancer therapy efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anandhi Senthilkumar H, Fata JE, and Kennelly EJ (2018) “Phytoestrogens: the current state of research emphasizing breast pathophysiology.” Phytother Res (August 2017):1–13

    Google Scholar 

  • Baatout S, Derradji H, Jacquet P, Ooms D, Michaux A, Mergeay M (2004) Enhanced radiation-induced apoptosis of Cancer cell lines after treatment with resveratrol. Int J Mol Med

    Google Scholar 

  • Banerjee S, Zhang Y, Ali S, Bhuiyan M, Wang Z, Chiao PJ, Philip PA, Abbruzzese J, Sarkar FH (2005) Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an Orthotopic model of pancreatic Cancer. Cancer Res 65(19):9064–9072

    Article  CAS  PubMed  Google Scholar 

  • Belcher SM, Burton CC, Cookman CJ, Kirby M, Miranda GL, Saeed FO, Wray KE (2017) Estrogen and soy isoflavonoids decrease sensitivity of medulloblastoma and central nervous system primitive neuroectodermal tumor cells to chemotherapeutic cytotoxicity. BMC Pharmacol Toxicol 18(1):1–11

    Article  Google Scholar 

  • Blanquer-Rossello MM, Oliver J, Valle A, Roca P (2013) Effect of xanthohumol and 8-prenylnaringenin on MCF-7 breast cancer cells oxidative stress and mitochondrial complexes expression. J Cell Biochem 114(12):2785–2794

    Article  CAS  PubMed  Google Scholar 

  • Blanquer-Rosselló M d M, Hernández-López R, Roca P, Oliver J, Valle A (2017) Resveratrol induces mitochondrial respiration and apoptosis in SW620 colon cancer cells. Biochim Biophys Acta Gen Subj 1891(2):431–440

    Article  Google Scholar 

  • Blomquist CH, Lima PH, Hotchkiss JR (2005) Inhibition of 3α-hydroxysteroid dehydrogenase (3α-HSD) activity of human lung microsomes by genistein, daidzein, coumestrol and C 18-, C19- and C21-hydroxysteroids and ketosteroids. Steroids 70(8):507–514

    Article  CAS  PubMed  Google Scholar 

  • Chan KKL, Siu MKY, Jiang Y x, Wang J j, Leung THY, Ngan HYS (2018) Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian Cancer. Cancer Cell Int 18(1):1–14

    Article  Google Scholar 

  • Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, Pieters L, Vlietinck AJ, Vanden Berghe B (1998) Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61(1):71–76. https://doi.org/10.1021/np970237h

  • Cotterchio M, Boucher BA, Kreiger N, Mills CA, Thompson LU (2008) Dietary phytoestrogen intake – lignans and isoflavones - and breast cancer risk (Canada). Cancer Causes Control 19(3):259–272

    Article  PubMed  Google Scholar 

  • Eklund PC, Långvik OK, Wärnå JP, Salmi TO, Willför SM, Sjöholm RE (2005) Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Org Biomol Chem 3(18):3336

    Article  CAS  PubMed  Google Scholar 

  • El-rayes BF, Philip PA, Sarkar FH, Shields AF, Ferris AM, Hess K, Kaseb AO, Javle MM, Varadhachary GR, Wolff RA, Abbruzzese JL (2011) A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Investig New Drugs 29:694–699

    Article  CAS  Google Scholar 

  • Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8(3):281–290

    Article  CAS  PubMed  Google Scholar 

  • Hu XJ, Xie MY, Kluxen FM, Diel P (2014) Genistein modulates the anti-tumor activity of cisplatin in MCF-7 breast and HT-29 colon cancer cells. Arch Toxicol 88(3):625–635

    CAS  PubMed  Google Scholar 

  • Huang W, Wan C, Luo Q, Huang Z, Luo Q (2014) Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric Cancer. Int J Mol Sci 15(3):3432–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova D, Zhelev Z, Semkova S, Aoki I, Bakalova R (2019) Resveratrol modulates the redox-status and cytotoxicity of anticancer drugs by sensitizing leukemic lymphocytes and protecting normal lymphocytes. Anticancer Res 39(7):3745–3755

    Article  CAS  PubMed  Google Scholar 

  • Johnson GE, Ivanov VN, Hei TK (2008) Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival. Apoptosis 13:790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampkötter A, Chovolou Y, Kulawik A, Röhrdanz E, Weber N, Proksch P, Wätjen W (2008) Isoflavone daidzein possesses no antioxidant activities in cell-free assays but induces the antioxidant enzyme catalase. Nutr Res 28(9):620–628. https://doi.org/10.1016/j.nutres.2008.06.002. PMID: 19083468

  • Kim IG, Kim JS, Lee JH, Cho EW (2014) Genistein decreases cellular redox potential, partially suppresses cell growth in HL-60 leukemia cells and sensitizes cells to γ-radiation-induced cell death. Mol Med Rep 10(6):2786–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138(3):863–870

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Koo BS, Park SY, Kim YM (2015) Anti-angiogenic effects of resveratrol in combination with 5-fluorouracil on B16 murine melanoma cells. Mol Med Rep 12(2):2777–2783

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ellis K-L, Ali S, El-Rayes BF, Nedeljkovic-Kurepa A, Kucuk O, Philip PA, Sarkar FH (2004) Apoptosis-inducing effect of chemotherapeutic agents is potentiated by soy isoflavone genistein, a natural inhibitor of NF-KB in BxPC-3 pancreatic cancer cell line. Pancreas 28(4):90–95

    Article  Google Scholar 

  • Li D, Wang P, Luo Y, Zhao M, Chen F (2017) Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr 57(8):1729–1741

    Article  CAS  PubMed  Google Scholar 

  • Löhr JM, Karimi M, Omazic B, Kartalis N, Verbeke CS, Berkenstam A, Frödin JE (2016) A phase I dose escalation trial of AXP107-11, a novel multi-component crystalline form of genistein, in combination with gemcitabine in chemotherapy-naive patients with unresectable pancreatic cancer. Pancreatology 16(4):640–645

    Article  PubMed  Google Scholar 

  • Milligan S, Kalita J, Pocock V, Heyerick A, De Cooman L, Rong H, De Keukeleire D (2002) Oestrogenic activity of the hop phyto-oestrogen, 8-Prenylnaringenin. Reproduction:235

    Google Scholar 

  • Mondal A, Bennett LL (2016) Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage. Biomed Pharmacother 84:1906–1914

    Article  CAS  PubMed  Google Scholar 

  • Monteiro R, Becker H, Azevedo I, Calhau C (2006) Effect of hop (Humulus Lupulus L.) flavonoids on aromatase (estrogen synthase) activity. J Agric Food Chem 54:2938

    Article  CAS  PubMed  Google Scholar 

  • Munkarah AR, Sarkar FH, Banerjee S, Morris RT, Solomon LA, Ali S (2008) Sensitization of ovarian cancer cells to cisplatin by genistein: the role of NF-KappaB. J Ovarian Res 1(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikolic I, Savic-Gajic I, Tacic A, Savic I (2017) Classification and biological activity of phytoestrogens: a review. Adv Technol 6(2):96–106

    Article  Google Scholar 

  • Öztürk Y, Günaydın C, Yalçın F, Nazıroğlu M, Braidy N (2019) Resveratrol enhances apoptotic and oxidant effects of paclitaxel through TRPM2 channel activation in DBTRG glioblastoma cells. Oxidative Med Cell Longev 2019:1

    Article  Google Scholar 

  • Pons DG, Nadal-Serrano M, Torrens-Mas M, Oliver J, Roca P (2016) The phytoestrogen genistein affects breast cancer cells treatment depending on the ERa/ERb ratio. J Cell Biochemist 117(2015):218–229

    Article  CAS  Google Scholar 

  • Qu X-l, Fang Y, Zhang M, Zhang Y-z (2014) Phytoestrogen intake and risk of ovarian cancer: a meta-analysis of 10 observational studies. Asian Pac J Cancer Prev 15(21):9085–9091

    Article  PubMed  Google Scholar 

  • Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526

    Article  CAS  PubMed  Google Scholar 

  • Rietjens IMCM, Louisse J, Beekmann K (2017) The potential health effects of dietary phytoestrogens. Br J Pharmacol 174(11):1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Robb EL, Stuart JA (2011) Resveratrol interacts with estrogen receptor-β to inhibit cell replicative growth and enhance stress resistance by upregulating mitochondrial superoxide dismutase. Free Radic Biol Med 50(7):821–831. https://doi.org/10.1016/j.freeradbiomed.2010.12.038. Epub 2011 Jan 6. PMID: 21215799

  • Roca P, Sastre-Serra J, Nadal-Serrano M, Pons DG, Blanquer-Rossello MD, Oliver J (2014) Phytoestrogens and mitochondrial biogenesis in breast cancer. Influence of estrogen receptors ratio. Curr Pharm Des 20:5594

    Article  CAS  PubMed  Google Scholar 

  • Rosa LA d l, Alvarez-Parrilla E, González-Aguilar GA (2010) Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. Wiley-Blackwell, Ames

    Google Scholar 

  • Santandreu FM, Valle A, Oliver J, Roca P (2011) Resveratrol potentiates the cytotoxic oxidative stress induced by chemotherapy in human colon cancer cells. Cell Physiol Biochem 28(2):219–228

    Article  CAS  PubMed  Google Scholar 

  • Satake H, Koyama T, Bahabadi SE, Matsumoto E, Ono E, Murata J (2015) Essences in metabolic engineering of lignan biosynthesis. Meta 5(2):270–290

    CAS  Google Scholar 

  • Scarlatti F, Sala G, Ricci C, Maioli C, Milani F, Minella M, Botturi M, Ghidoni R (2007) Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase. Cancer Lett 253:124

    Article  CAS  PubMed  Google Scholar 

  • Setiawan VW, Zhang Z-F, Yu G-P, Lu Q-Y, Li Y-L, Lu M-L, Wang M-R, Guo CH, Yu S-Z, Kurtz RC, Hsieh C-C (2001) Protective effect of green tea on the risks of chronic gastritis and stomach cancer. Int J Cancer 92(4):600–604

    Article  CAS  PubMed  Google Scholar 

  • Shay J, Elbaz HA, Lee I, Zielske SP, Malek MH, Hüttemann M (2015) Molecular mechanisms and therapeutic effects of (−)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxidative Med Cell Longev 2015:181260

    Article  Google Scholar 

  • Sirerol JA, Rodríguez ML, Mena S, Asensi MA, Estrela JM, Ortega AL (2016) Role of natural stilbenes in the prevention of cancer. Oxidative Med Cell Longev 2016:1–15

    Article  Google Scholar 

  • Sonn GA, Aronson W, Litwin MS (2005) Impact of diet on prostate cancer: a review. Prostate Cancer Prostatic Dis 8(4):304–310

    Article  CAS  PubMed  Google Scholar 

  • Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R, Nabavi SM (2015) Genistein and cancer: current status, challenges, and future directions. Adv Nutr (Bethesda, Md) 6(4):408–419

    Article  CAS  Google Scholar 

  • Suliman FA, Khodeer DM, Ibrahiem A, Mehanna ET, El-Kherbetawy MK, Mohammad HMF, Zaitone SA, Moustafa YM (2018) Renoprotective effect of the isoflavonoid biochanin a against cisplatin induced acute kidney injury in mice: effect on inflammatory burden and P53 apoptosis. Int Immunopharmacol 61:8–19

    Article  CAS  PubMed  Google Scholar 

  • Surico D, Ercoli A, Farruggio S, Raina G, Filippini D, Mary D, Minisini R, Surico N, Pirisi M, Grossini E (2017) Modulation of oxidative stress by 17 β-estradiol and genistein in human hepatic cell lines in vitro. Cell Physiol Biochem 42(3):1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Susanikova I, Puchl’ová M, Lachová V, Švajdlenka E, Muèaji P, Smetana K, Gál P (2019) Genistein and selected phytoestrogen-containing extracts differently modulate antioxidant properties and cell differentiation: an in vitro study in NIH-3T3, HaCaT and MCF-7 cells. Folia Biol (Czech Republic) 65(1):24–35

    CAS  Google Scholar 

  • Suzuki R, Kang Y’a, Li X, Roife D, Zhang R, Fleming JB (2014) Genistein potentiates the antitumor effect of 5-fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells. Anticancer Res 34(9):4685–4692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Q, Ma J, Sun J, Longfei Yang FAN, Yang WEIZ, Li R, Wang LEI, Wang Y, Wang HE (2018) Genistein and AG1024 synergistically increase the radiosensitivity of prostate cancer cells. Oncol Rep 40:579–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tonetti DA, Zhang Y, Zhao H, Lim SB, Constantinou AI (2007) The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant T47D/PKCα. Nutr Cancer 58(2):222–229

    Article  CAS  PubMed  Google Scholar 

  • Van Duursen MBM, Nijmeijer SM, de Morree ES, Chr de Jong P, van den Berg M (2011) Genistein induces breast Cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology 289(2–3):67–73

    Article  PubMed  Google Scholar 

  • Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269(2):281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T-y, Li Q, Bi K-s (2018) Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci 13(1):12–23

    Article  PubMed  Google Scholar 

  • Wu J, Williams D, Walter GA, Thompson WE, Sidell N (2014) Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells. Exp Cell Res 328(2):351–360

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Zhu W, Feng W, Lee SS, Leung AW, Shen J, Gao L, Xu C (2019) A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy. Front Pharmacol 9

    Google Scholar 

  • Zhang B, Shi Z-l, Liu B, Yan X-b, Feng J, Tao H-m (2010) Enhanced anticancer effect of gemcitabine by genistein in osteosarcoma: the role of Akt and nuclear factor-KB. Anti-Cancer Drugs 21(3):288–296

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zheng J, Li Y, Xu DP, Li S, Chen YM, Li HB (2016) Natural polyphenols for prevention and treatment of cancer. Nutrients 8(8)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margalida Torrens-Mas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Torrens-Mas, M., Roca, P. (2022). Phytoestrogens Modulate Oxidative Stress. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_133

Download citation

Publish with us

Policies and ethics