Skip to main content

Oncologic Properties of Retinoblastoma Genes

  • Chapter
  • First Online:
Advances in Vision Research, Volume III

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 441 Accesses

Abstract

Retinoblastoma is the commonest pediatric intraocular cancer across various populations. Following the “two-hit model,” both alleles are inactivated at the disease-causing gene, RB1. RB has been well studied to establish its “classical” function in regulating cell cycle progression and the transcription machinery. Recent studies have identified additional genetic factors contributing to retinoblastoma tumor development. Some of these newly identified genetic factors, including MGMT and MLH1, are well known for their roles in maintaining genome stability. On the other hand, novel functions have also been found in RB in preserving genome stability. As genome instability is a major driving force of cancer, understanding the oncologic properties of RB and other retinoblastoma related genes could improve our knowledge and disease management in retinoblastoma and other RB mutated cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986;323(6089):643–6.

    Article  CAS  Google Scholar 

  2. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81(3):323–30.

    Article  CAS  Google Scholar 

  3. Dick FA, Goodrich DW, Sage J, Dyson NJ. Non-canonical functions of the RB protein in cancer. Nat Rev Cancer. 2018;18(7):442–51.

    Article  CAS  Google Scholar 

  4. Choy KW, Pang CP, Yu CB, Wong HL, Ng JS, Fan DS, Lo KW, Chai JT, Wang J, Fu W, Lam DS. Loss of heterozygosity and mutations are the major mechanisms of RB1 gene inactivation in Chinese with sporadic retinoblastoma. Hum Mutat. 2002;20(5):408.

    Article  Google Scholar 

  5. Xiao B, Spencer J, Clements A, Ali-Khan N, Mittnacht S, Broceno C, Burghammer M, Perrakis A, Marmorstein R, Gamblin SJ. Crystal structure of the retinoblastoma tumor suppressor protein bound to E2F and the molecular basis of its regulation. Proc Natl Acad Sci U S A. 2003;100(5):2363–8.

    Article  CAS  Google Scholar 

  6. Ohtani-Fujita N, Dryja TP, Rapaport JM, Fujita T, Matsumura S, Ozasa K, Watanabe Y, Hayashi K, Maeda K, Kinoshita S, Matsumura T, Ohnishi Y, Hotta Y, Takahashi R, Kato MV, Ishizaki K, Sasaki MS, Horsthemke B, Minoda K, Sakai T. Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma. Cancer Genet Cytogenet. 1997;98(1):43–9.

    Article  CAS  Google Scholar 

  7. Lohmann DR, Gerick M, Brandt B, Oelschlager U, Lorenz B, Passarge E, Horsthemke B. Constitutional RB1-gene mutations in patients with isolated unilateral retinoblastoma. Am J Hum Genet. 1997;61(2):282–94.

    Article  CAS  Google Scholar 

  8. Zhu X, Dunn JM, Goddard AD, Squire JA, Becker A, Phillips RA, Gallie BL. Mechanisms of loss of heterozygosity in retinoblastoma. Cytogenet Cell Genet. 1992;59(4):248–52.

    Article  CAS  Google Scholar 

  9. Kato MV, Ishizaki K, Ejima Y, Kaneko A, Tanooka H, Sasaki MS. Loss of heterozygosity on chromosome 13 and its association with delayed growth of retinoblastoma. Int J Cancer. 1993;54(6):922–6.

    Article  CAS  Google Scholar 

  10. Harada K, Toyooka S, Maitra A, Maruyama R, Toyooka KO, Timmons CF, Tomlinson GE, Mastrangelo D, Hay RJ, Minna JD, Gazdar AF. Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene. 2002;21(27):4345–9.

    Article  CAS  Google Scholar 

  11. Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 2002;22(12):4309–18.

    Article  CAS  Google Scholar 

  12. Choy KW, Lee TC, Cheung KF, Fan DS, Lo KW, Beaverson KL, Abramson DH, Lam DS, Yu CB, Pang CP. Clinical implications of promoter hypermethylation in RASSF1A and MGMT in retinoblastoma. Neoplasia. 2005;7(3):200–6.

    Article  CAS  Google Scholar 

  13. Choy KW, Pang CP, To, K.F, Yu CB, Ng JS, Lam DS. Impaired expression and promotor hypermethylation of O6-methylguanine-DNA methyltransferase in retinoblastoma tissues. Invest Ophthalmol Vis Sci. 2002;43(5):1344–9.

    PubMed  Google Scholar 

  14. Mojas N, Lopes M, Jiricny J. Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev. 2007;21(24):3342–55.

    Article  CAS  Google Scholar 

  15. Simpkins SB, Bocker T, Swisher EM, Mutch DG, Gersell DJ, Kovatich AJ, Palazzo JP, Fishel R, Goodfellow PJ. MLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum Mol Genet. 1999;8(4):661–6.

    Article  CAS  Google Scholar 

  16. Capel E, Flejou JF, Hamelin R. Assessment of MLH1 promoter methylation in relation to gene expression requires specific analysis. Oncogene. 2007;26(54):7596–600.

    Article  CAS  Google Scholar 

  17. Lothe RA. Microsatellite instability in human solid tumors. Mol Med Today. 1997;3(2):61–8.

    Article  CAS  Google Scholar 

  18. Choy KW, Pang CP, Fan DS, Lee TC, Wang JH, Abramson DH, Lo KW, To, K.F, Yu CB, Beaverson KL, Cheung KF, Lam DS. Microsatellite instability and MLH1 promoter methylation in human retinoblastoma. Invest Ophthalmol Vis Sci. 2004;45(10):3404–9.

    Article  Google Scholar 

  19. Pickering MT, Kowalik TF. Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene. 2006;25(5):746–55.

    Article  CAS  Google Scholar 

  20. Dimaras H, Khetan V, Halliday W, Orlic M, Prigoda NL, Piovesan B, Marrano P, Corson TW, Eagle RC Jr, Squire JA, Gallie BL. Loss of RB1 induces non-proliferative retinoma: increasing genomic instability correlates with progression to retinoblastoma. Hum Mol Genet. 2008;17(10):1363–72.

    Article  CAS  Google Scholar 

  21. Manning AL, Dyson NJ. RB: mitotic implications of a tumour suppressor. Nat Rev Cancer. 2012;12(3):220–6.

    Article  CAS  Google Scholar 

  22. Coschi CH, Dick FA. Chromosome instability and deregulated proliferation: an unavoidable duo. Cell Mol Life Sci. 2012;69(12):2009–24.

    Article  CAS  Google Scholar 

  23. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–68.

    Article  CAS  Google Scholar 

  24. Velez-Cruz R, Manickavinayaham S, Biswas AK, Clary RW, Premkumar T, Cole F, Johnson DG. RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev. 2016;30(22):2500–12.

    Article  CAS  Google Scholar 

  25. Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999;63(2):349–404.

    Article  CAS  Google Scholar 

  26. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

    Article  CAS  Google Scholar 

  27. Heyer WD, Ehmsen KT, Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010;44:113–39.

    Article  CAS  Google Scholar 

  28. Chu WK, Hanada K, Kanaar R, Hickson ID. BLM has early and late functions in homologous recombination repair in mouse embryonic stem cells. Oncogene. 2010;29(33):4705–14.

    Article  CAS  Google Scholar 

  29. Cook R, Zoumpoulidou G, Luczynski MT, Rieger S, Moquet J, Spanswick VJ, Hartley JA, Rothkamm K, Huang PH, Mittnacht S. Direct involvement of retinoblastoma family proteins in DNA repair by non-homologous end-joining. Cell Rep. 2015;10(12):2006–18.

    Article  CAS  Google Scholar 

  30. Jiang Y, Chu WK. Potential roles of the retinoblastoma protein in regulating genome editing. Front Cell Dev Biol. 2018;6:81.

    Article  Google Scholar 

  31. Manning AL, Yazinski SA, Nicolay B, Bryll A, Zou L, Dyson NJ. Suppression of genome instability in pRB-deficient cells by enhancement of chromosome cohesion. Mol Cell. 2014;53(6):993–1004.

    Article  CAS  Google Scholar 

  32. Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguia R, Dean DC, Esteller M, Jenuwein T, Blasco MA. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol. 2005;7(4):420–8.

    Article  CAS  Google Scholar 

  33. Isaac CE, Francis SM, Martens AL, Julian LM, Seifried LA, Erdmann N, Binne UK, Harrington L, Sicinski P, Berube NG, Dyson NJ, Dick FA. The retinoblastoma protein regulates pericentric heterochromatin. Mol Cell Biol. 2006;26(9):3659–71.

    Article  CAS  Google Scholar 

  34. Longworth MS, Herr A, Ji JY, Dyson NJ. RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev. 2008;22(8):1011–24.

    Article  CAS  Google Scholar 

  35. Ishak CA, Marshall AE, Passos DT, White CR, Kim SJ, Cecchini MJ, Ferwati S, MacDonald WA, Howlett CJ, Welch ID, Rubin SM, Mann MRW, Dick FA. An RB-EZH2 complex mediates silencing of repetitive DNA sequences. Mol Cell. 2016;64(6):1074–87.

    Article  CAS  Google Scholar 

  36. Montoya-Durango DE, Ramos KA, Bojang P, Ruiz L, Ramos IN, Ramos KS. LINE-1 silencing by retinoblastoma proteins is effected through the nucleosomal and remodeling deacetylase multiprotein complex. BMC Cancer. 2016;16:38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Kit Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chu, W.K., Yam, J.C.S., Chen, L.J., Pang, C.P. (2021). Oncologic Properties of Retinoblastoma Genes. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume III. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9184-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9184-6_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9183-9

  • Online ISBN: 978-981-15-9184-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics