Skip to main content

Regional Differences in Prevalence of Myopia: Genetic or Environmental Effects?

  • Chapter
  • First Online:
Advances in Vision Research, Volume III

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 452 Accesses

Abstract

It is well accepted that a myopia epidemic is occurring globally, with 50% of the global population predicted to have myopia by the year 2050. Parts of East and Southeast Asia, such as China, South Korea, and Singapore, have the most rapidly increasing rates of myopia compared to other parts of the world. The rate of rise in myopia differs between geographical locations and, even within a country, varying according to the level of urbanization of the studied region and between ethnic groups. Genetic factors are known to play a part in the myopia epidemic, with over 100 genes associated with myopia or its ocular traits already identified. Children in families where one or both parents have myopia are more likely to develop myopia. However, the epidemic is likely to be the result of environmental risk factors, such as higher levels of education, increased near work, and decreased time spent outdoors, rather than genetic factors. These environmental factors may predispose individuals who are genetically susceptible to develop myopia and may provide a target for early intervention and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim EC, Morgan IG, Kakizaki H, et al. Prevalence and risk factors for Refractive errors: Korean National Health and nutrition examination survey 2008–2011. PLoS One. 2013;8:e80361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee JH, Jee D, Kwon JW, Lee WK. Prevalence and risk factors for myopia in a rural Korean population. Invest Ophthalmol Vis Sci. 2013;54:5466–71.

    Article  PubMed  Google Scholar 

  3. Jung SK, Lee JH, Kakizaki H, Jee D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. Invest Ophthalmol Vis Sci. 2012;53:5579–83.

    Article  PubMed  Google Scholar 

  4. Lyu Y, Zhang H, Gong Y, et al. Prevalence of and factors associated with myopia in primary school students in the Chaoyang District of Beijing, China. Jpn J Ophthalmol. 2015;59:421–9.

    Article  PubMed  Google Scholar 

  5. You QS, Wu LJ, Duan JL, et al. Prevalence of myopia in school children in greater Beijing: the Beijing childhood eye study. Acta Ophthalmol. 2014;92:e398–406.

    Article  PubMed  Google Scholar 

  6. Congdon N, Wang Y, Song Y, et al. Visual disability, visual function, and myopia among rural Chinese secondary school children: the Xichang pediatric Refractive error study (X-Pres)--report 1. Invest Ophthalmol Vis Sci. 2008;49:2888–94.

    Article  PubMed  Google Scholar 

  7. Cheng CY, Hsu WM, Liu JH, et al. Refractive errors in an elderly Chinese population in Taiwan: the Shihpai eye study. Invest Ophthalmol Vis Sci. 2003;44:4630–8.

    Article  PubMed  Google Scholar 

  8. Lin LL, Shih YF, Hsiao CK, Chen CJ. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singap. 2004;33:27–33.

    CAS  PubMed  Google Scholar 

  9. Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res. 2018;62:134–49.

    Article  PubMed  Google Scholar 

  10. Williams KM, Bertelsen G, Cumberland P, et al. Increasing prevalence of myopia in Europe and the impact of education. Ophthalmology. 2015;122:1489–97.

    Article  PubMed  Google Scholar 

  11. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–42.

    Article  PubMed  Google Scholar 

  12. Ip JM, Huynh SC, Robaei D, et al. Ethnic differences in the impact of parental myopia: findings from a population-based study of 12-year-old Australian children. Invest Ophthalmol Vis Sci. 2007;48:2520–8.

    Article  PubMed  Google Scholar 

  13. Low W, Dirani M, Gazzard G, et al. Family history, near work, outdoor activity, and myopia in Singapore Chinese preschool children. Br J Ophthalmol. 2010;94:1012–6.

    Article  PubMed  Google Scholar 

  14. Ahn H, Lyu IS, Rim TH. The influence of parental myopia on Children’s myopia in different generations of parent-offspring pairs in South Korea. Semin Ophthalmol. 2018;33:419–28.

    Article  PubMed  Google Scholar 

  15. Mutti DO, Mitchell GL, Moeschberger ML, et al. Parental myopia, near work, school achievement, and Children’s Refractive error. Invest Ophthalmol Vis Sci. 2002;43:3633–40.

    PubMed  Google Scholar 

  16. Quek TP, Chua CG, Chong CS, et al. Prevalence of Refractive errors in teenage high school students in Singapore. Ophthalmic Physiol Opt. 2004;24:47–55.

    Article  PubMed  Google Scholar 

  17. Pan CW, Cheung CY, Aung T, et al. Differential associations of myopia with major age-related eye diseases: the Singapore Indian eye study. Ophthalmology. 2013;120:284–91.

    Article  PubMed  Google Scholar 

  18. Saw SM, Chan YH, Wong WL, et al. Prevalence and risk factors for Refractive errors in the Singapore Malay eye survey. Ophthalmology. 2008;115:1713–9.

    Article  PubMed  Google Scholar 

  19. Koh V, Yang A, Saw SM, et al. Differences in prevalence of Refractive errors in Young Asian males in Singapore between 1996–1997 and 2009–2010. Ophthalmic Epidemiol. 2014;21:247–55.

    Article  PubMed  Google Scholar 

  20. Gupta A, Casson RJ, Newland HS, et al. Prevalence of Refractive error in rural Myanmar: the Meiktila eye study. Ophthalmology. 2008;115:26–32.

    Article  CAS  PubMed  Google Scholar 

  21. Saw SM, Gazzard G, Koh D, et al. Prevalence rates of Refractive errors in Sumatra, Indonesia. Invest Ophthalmol Vis Sci. 2002;43:3174–80.

    PubMed  Google Scholar 

  22. Bourne RR, Dineen BP, Ali SM, et al. Prevalence of Refractive error in Bangladeshi adults: results of the National Blindness and Low vision survey of Bangladesh. Ophthalmology. 2004;111:1150–60.

    Article  PubMed  Google Scholar 

  23. Nangia V, Jonas JB, Sinha A, et al. Refractive error in Central India: the Central India eye and medical study. Ophthalmology. 2010;117:693–9.

    Article  PubMed  Google Scholar 

  24. Yazar S, Hewitt AW, Black LJ, et al. Myopia is associated with lower vitamin D status in Young adults. Invest Ophthalmol Vis Sci. 2014;55:4552–9.

    Article  PubMed  Google Scholar 

  25. Attebo K, Ivers RQ, Mitchell P. Refractive errors in an older population: the Blue Mountains eye study. Ophthalmology. 1999;106:1066–72.

    Article  CAS  PubMed  Google Scholar 

  26. Wensor M, McCarty CA, Taylor HR. Prevalence and risk factors of myopia in Victoria, Australia. Arch Ophthalmol. 1999;117:658–63.

    Article  CAS  PubMed  Google Scholar 

  27. Garner LF, Kinnear RF, Klinger JD, McKellar MJ. Prevalence of myopia in school children in Vanuatu. Acta Ophthalmol. 1985;63:323–6.

    Article  CAS  Google Scholar 

  28. Barnes SS, Utu PJ, Sumida L, et al. Survey on visual impairment and Refractive errors on Ta’u island, American Samoa. J Ophthalmic Vis Res. 2011;6:32–5.

    PubMed  PubMed Central  Google Scholar 

  29. Ip JM, Rose KA, Morgan IG, et al. Myopia and the urban environment: findings in a sample of 12-year-old Australian school children. Invest Ophthalmol Vis Sci. 2008;49:3858–63.

    Article  PubMed  Google Scholar 

  30. Rudnicka AR, Kapetanakis VV, Wathern AK, et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for Aetiology and early prevention. Br J Ophthalmol. 2016;100:882–90.

    Article  PubMed  Google Scholar 

  31. Sherwin JC, Mackey DA. Update on the epidemiology and genetics of myopic Refractive error. Expert Rev Ophthalmol. 2013;8:63–87.

    Article  CAS  Google Scholar 

  32. Xu L, Li J, Cui T, et al. Refractive error in urban and rural adult Chinese in Beijing. Ophthalmology. 2005;112:1676–83.

    Article  PubMed  Google Scholar 

  33. Saw SM, Hong RZ, Zhang MZ, et al. Near-work activity and myopia in rural and urban schoolchildren in China. J Pediatr Ophthalmol Strabismus. 2001;38:149–55.

    Article  CAS  PubMed  Google Scholar 

  34. He M, Huang W, Zheng Y, et al. Refractive error and visual impairment in school children in rural southern China. Ophthalmology. 2007;114:374–82.

    Article  PubMed  Google Scholar 

  35. Sun J, Zhou J, Zhao P, et al. High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai. Invest Ophthalmol Vis Sci. 2012;53:7504–9.

    Article  PubMed  Google Scholar 

  36. He M, Xu J, Yin Q, Ellwein LB. Need and challenges of Refractive correction in urban Chinese school children. Optom Vis Sci. 2005;82:229–34.

    Article  PubMed  Google Scholar 

  37. He M, Zeng J, Liu Y, et al. Refractive error and visual impairment in urban children in southern China. Invest Ophthalmol Vis Sci. 2004;45:793–9.

    Article  PubMed  Google Scholar 

  38. Liang YB, Wong TY, Sun LP, et al. Refractive errors in a rural Chinese adult population the Handan eye study. Ophthalmology. 2009;116:2119–27.

    Article  PubMed  Google Scholar 

  39. Zhao J, Mao J, Luo R, et al. The progression of Refractive error in school-age children: Shunyi District, China. Am J Ophthalmol. 2002;134:735–43.

    Article  PubMed  Google Scholar 

  40. Paudel P, Ramson P, Naduvilath T, et al. Prevalence of vision impairment and Refractive error in school children in Ba ria – Vung Tau Province, Vietnam. Clin Exp Ophthalmol. 2014;42:217–26.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dandona R, Dandona L, Srinivas M, et al. Refractive error in children in a rural population in India. Invest Ophthalmol Vis Sci. 2002;43:615–22.

    PubMed  Google Scholar 

  42. Krishnaiah S, Srinivas M, Khanna RC, Rao GN. Prevalence and risk factors for Refractive errors in the south Indian adult population: the Andhra Pradesh eye disease study. Clin Ophthalmol. 2009;3:17–27.

    PubMed  PubMed Central  Google Scholar 

  43. Dandona R, Dandona L, Srinivas M, et al. Population-based assessment of Refractive error in India: the Andhra Pradesh eye disease study. Clin Exp Ophthalmol. 2002;30:84–93.

    Article  PubMed  Google Scholar 

  44. Shah SP, Jadoon MZ, Dineen B, et al. Refractive errors in the adult Pakistani population: the National Blindness and visual impairment survey. Ophthalmic Epidemiol. 2008;15:183–90.

    Article  PubMed  Google Scholar 

  45. Raju P, Ramesh SV, Arvind H, et al. Prevalence of Refractive errors in a rural south Indian population. Invest Ophthalmol Vis Sci. 2004;45:4268–72.

    Article  PubMed  Google Scholar 

  46. Murthy GV, Gupta S, Ellwein LB, et al. A population-based eye survey of older adults in a Rural District of Rajasthan: I. central vision impairment, blindness, and cataract surgery. Ophthalmology. 2001;108:679–85.

    Article  CAS  PubMed  Google Scholar 

  47. Yin Q, Hu A, Liang Y, et al. A two-site, population-based study of barriers to cataract surgery in rural China. Invest Ophthalmol Vis Sci. 2009;50:1069–75.

    Article  PubMed  Google Scholar 

  48. Jadoon Z, Shah SP, Bourne R, et al. Cataract prevalence, cataract surgical coverage and barriers to uptake of cataract surgical services in Pakistan: the Pakistan National Blindness and visual impairment survey. Br J Ophthalmol. 2007;91:1269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rudnicka AR, Owen CG, Nightingale CM, et al. Ethnic differences in the prevalence of myopia and ocular biometry in 10- and 11-year-old children: the child heart and health study in England (chase). Invest Ophthalmol Vis Sci. 2010;51:6270–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wen G, Tarczy-Hornoch K, McKean-Cowdin R, et al. Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic white and Asian children: multi-ethnic pediatric eye disease study. Ophthalmology. 2013;120:2109–16.

    Article  PubMed  Google Scholar 

  51. Kaur A. Labour migration trends and policy challenges in Southeast Asia. Polic Soc. 2010;29:385–97.

    Article  Google Scholar 

  52. Saw SM, Goh PP, Cheng A, et al. Ethnicity-specific Prevalences of Refractive errors vary in Asian children in Neighbouring Malaysia and Singapore. Br J Ophthalmol. 2006;90:1230–5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu HM, Seet B, Yap EP, et al. Does education explain ethnic differences in myopia prevalence? A population-based study of Young adult males in Singapore. Optom Vis Sci. 2001;78:234–9.

    Article  CAS  PubMed  Google Scholar 

  54. Au Eong KG, Tay TH, Lim MK. Education and myopia in 110,236 Young Singaporean males. Singap Med J. 1993;34:489–92.

    CAS  Google Scholar 

  55. Yeow PT. Progression of myopia in different ethnic groups in Malaysia. Med J Malaysia. 1994;49:138–41.

    CAS  PubMed  Google Scholar 

  56. Clammer J. Malay Society in Singapore: a preliminary analysis. SE Asian J Soc Sci. 1981;9:19–32.

    Article  Google Scholar 

  57. Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA. The heritability of ocular traits. Surv Ophthalmol. 2010;55:561–83.

    Article  PubMed  Google Scholar 

  58. Klein AP, Suktitipat B, Duggal P, et al. Heritability analysis of spherical equivalent, axial length, corneal curvature, and anterior chamber depth in the beaver dam eye study. Arch Ophthalmol. 2009;127:649–55.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hammond CJ, Snieder H, Gilbert CE, Spector TD. Genes and environment in Refractive error: the twin eye study. Invest Ophthalmol Vis Sci. 2001;42:1232–6.

    CAS  PubMed  Google Scholar 

  60. Lyhne N, Sjolie AK, Kyvik KO, Green A. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20–45 year old twins. Br J Ophthalmol. 2001;85:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dirani M, Shekar SN, Baird PN. Evidence of shared genes in refraction and axial length: the genes in myopia (gem) twin study. Invest Ophthalmol Vis Sci. 2008;49:4336–9.

    Article  PubMed  Google Scholar 

  62. Guggenheim JA, Pong-Wong R, Haley CS, et al. Correlations in Refractive errors between siblings in the Singapore cohort study of risk factors for myopia. Br J Ophthalmol. 2007;91:781–4.

    Article  PubMed  Google Scholar 

  63. Peet JA, Cotch MF, Wojciechowski R, et al. Heritability and familial aggregation of Refractive error in the old order Amish. Invest Ophthalmol Vis Sci. 2007;48:4002–6.

    Article  PubMed  Google Scholar 

  64. Lim LT, Gong Y, Ah-Kee EY, et al. Impact of parental history of myopia on the development of myopia in mainland China school-aged children. Ophthalmol Eye Dis. 2014;6:31–5.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wojciechowski R. Nature and nurture: the complex genetics of myopia and Refractive error. Clin Genet. 2011;79:301–20.

    Article  CAS  PubMed  Google Scholar 

  66. Jacobi FK, Pusch CM. A decade in search of myopia genes. Front Biosci (Landmark Ed). 2010;15:359–72.

    Article  CAS  Google Scholar 

  67. Baird PN, Schache M, Dirani M. The genes in myopia (gem) study in understanding the Aetiology of Refractive errors. Prog Retin Eye Res. 2010;29:520–42.

    Article  PubMed  Google Scholar 

  68. Lam CY, Tam PO, Fan DS, et al. A genome-wide scan maps a novel high myopia locus to 5p15. Invest Ophthalmol Vis Sci. 2008;49:3768–78.

    Article  PubMed  Google Scholar 

  69. Naiglin L, Gazagne C, Dallongeville F, et al. A genome wide scan for familial high myopia suggests a novel locus on chromosome 7q36. J Med Genet. 2002;39:118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Paluru P, Ronan SM, Heon E, et al. New locus for autosomal dominant high myopia maps to the long arm of chromosome 17. Invest Ophthalmol Vis Sci. 2003;44:1830–6.

    Article  PubMed  Google Scholar 

  71. Zhang Q, Guo X, Xiao X, et al. A new locus for autosomal dominant high myopia maps to 4q22-Q27 between D4s1578 and D4s1612. Mol Vis. 2005;11:554–60.

    CAS  PubMed  Google Scholar 

  72. Stambolian D, Ibay G, Reider L, et al. Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 22q12. Am J Hum Genet. 2004;75:448–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wojciechowski R, Moy C, Ciner E, et al. Genomewide scan in Ashkenazi Jewish families demonstrates evidence of linkage of ocular refraction to a Qtl on chromosome 1p36. Hum Genet. 2006;119:389–99.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wojciechowski R, Stambolian D, Ciner E, et al. Genomewide linkage scans for ocular refraction and meta-analysis of four populations in the myopia family study. Invest Ophthalmol Vis Sci. 2009;50:2024–32.

    Article  PubMed  Google Scholar 

  75. Hammond CJ, Andrew T, Mak YT, Spector TD. A susceptibility locus for myopia in the Normal population is linked to the Pax6 gene region on chromosome 11: a Genomewide scan of dizygotic twins. Am J Hum Genet. 2004;75:294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ciner E, Ibay G, Wojciechowski R, et al. Genome-wide scan of African-American and white families for linkage to myopia. Am J Ophthalmol. 2009;147:512–7. e2

    Article  PubMed  Google Scholar 

  77. Nakanishi H, Yamada R, Gotoh N, et al. A Genome-Wide Association Analysis Identified a Novel Susceptible Locus for Pathological Myopia at 11q24.1. PLoS Genet. 2009;5:e1000660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Jonas JB, Xu L, Wang YX, et al. Education-related parameters in high myopia: adults versus school children. PLoS One. 2016;11:e0154554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Li YJ, Goh L, Khor CC, et al. Genome-wide association studies reveal genetic variants in Ctnnd2 for high myopia in Singapore Chinese. Ophthalmology. 2011;118:368–75.

    Article  PubMed  Google Scholar 

  80. Liu J, Zhang HX. Polymorphism in the 11q24.1 genomic region is associated with myopia: a comprehensive genetic study in Chinese and Japanese populations. Mol Vis. 2014;20:352–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lu B, Jiang D, Wang P, et al. Replication study supports Ctnnd2 as a susceptibility gene for high myopia. Invest Ophthalmol Vis Sci. 2011;52:8258–61.

    Article  CAS  PubMed  Google Scholar 

  82. Yu Z, Zhou J, Chen X, et al. Polymorphisms in the Ctnnd2 gene and 11q24.1 genomic region are associated with pathological myopia in a Chinese population. Ophthalmologica. 2012;228:123–9.

    Article  CAS  PubMed  Google Scholar 

  83. Li Z, Qu J, Xu X, et al. A genome-wide association study reveals association between common variants in an intergenic region of 4q25 and high-grade myopia in the Chinese Han population. Hum Mol Genet. 2011;20:2861–8.

    Article  CAS  PubMed  Google Scholar 

  84. Shi Y, Qu J, Zhang D, et al. Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population. Am J Hum Genet. 2011;88:805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Verhoeven VJ, Hysi PG, Wojciechowski R, et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for Refractive error and myopia. Nat Genet. 2013;45:314–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kiefer AK, Tung JY, Do CB, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 2013;9:e1003299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wojciechowski R, Hysi PG. Focusing in on the complex genetics of myopia. PLoS Genet. 2013;9:e1003442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Verhoeven VJM, Hysi PG, Wojciechowski R, et al. Genome-wide mega-analysis on myopia and Refractive error in cream and 23andme. Invest Ophthalmol Vis Sci. 2014;55:839.

    Google Scholar 

  89. Oishi M, Yamashiro K, Miyake M, et al. Association between Zic2, Rasgrf1, and Shisa6 genes and high myopia in Japanese subjects. Invest Ophthalmol Vis Sci. 2013;54:7492–7.

    Article  CAS  PubMed  Google Scholar 

  90. Simpson CL, Wojciechowski R, Oexle K, et al. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci. PLoS One. 2014;9:e107110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Cheng CY, Schache M, Ikram MK, et al. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with Refractive error. Am J Hum Genet. 2013;93:264–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liao X, Yap MKH, Leung KH, et al. Genetic association study of Kcnq5 polymorphisms with high myopia. Biomed Res Int. 2017;2017:3024156.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yoshikawa M, Yamashiro K, Miyake M, et al. Comprehensive replication of the relationship between myopia-related genes and Refractive errors in a large Japanese cohort. Invest Ophthalmol Vis Sci. 2014;55:7343–54.

    Article  CAS  PubMed  Google Scholar 

  94. Zadnik K, Satariano WA, Mutti DO, et al. The effect of parental history of myopia on Children's eye size. JAMA. 1994;271:1323–7.

    Article  CAS  PubMed  Google Scholar 

  95. Lam DS, Fan DS, Lam RF, et al. The effect of parental history of myopia on Children's eye size and growth: results of a longitudinal study. Invest Ophthalmol Vis Sci. 2008;49:873–6.

    Article  PubMed  Google Scholar 

  96. Stambolian D, Wojciechowski R, Oexle K, et al. Meta-analysis of genome-wide association studies in five cohorts reveals common variants in Rbfox1, a regulator of tissue-specific splicing, associated with Refractive error. Hum Mol Genet. 2013;22:2754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fan Q, Barathi VA, Cheng CY, et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. PLoS Genet. 2012;8:e1002753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miyake M, Yamashiro K, Tabara Y, et al. Identification of myopia-associated Wnt7b polymorphisms provides insights into the mechanism underlying the development of myopia. Nat Commun. 2015;6:6689.

    Article  CAS  PubMed  Google Scholar 

  99. Chen P, Miyake M, Fan Q, et al. Cmpk1 and Rbp3 are associated with corneal curvature in Asian populations. Hum Mol Genet. 2014;23:6129–36.

    Article  CAS  PubMed  Google Scholar 

  100. Napolitano F, Di Iorio V, Testa F, et al. Autosomal-dominant myopia associated to a novel P4ha2 missense variant and defective collagen hydroxylation. Clin Genet. 2018;93:982–91.

    Article  CAS  PubMed  Google Scholar 

  101. Tran-Viet KN, Powell C, Barathi VA, et al. Mutations in Sco2 are associated with autosomal-dominant high-grade myopia. Am J Hum Genet. 2013;92:820–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shi Y, Li Y, Zhang D, et al. Exome sequencing identifies Znf644 mutations in high myopia. PLoS Genet. 2011;7:e1002084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiang D, Li J, Xiao X, et al. Detection of mutations in Lrpap1, Ctsh, Leprel1, Znf644, Slc39a5, and Sco2 in 298 families with early-onset high myopia by exome sequencing. Invest Ophthalmol Vis Sci. 2014;56:339–45.

    Article  PubMed  CAS  Google Scholar 

  104. Xiao X, Li S, Jia X, et al. X-linked heterozygous mutations in Arr3 cause female-limited early onset high myopia. Mol Vis. 2016;22:1257–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51:232–58.

    Article  PubMed  Google Scholar 

  106. Dryja TP. Molecular genetics of Oguchi disease, fundus Albipunctatus, and other forms of stationary night blindness: lvii Edward Jackson memorial lecture. Am J Ophthalmol. 2000;130:547–63.

    Article  CAS  PubMed  Google Scholar 

  107. Pinazo-Duran MD, Zanon-Moreno V, Garcia-Medina JJ, et al. Eclectic ocular comorbidities and systemic diseases with eye involvement: a review. Biomed Res Int. 2016;2016:6215745.

    PubMed  PubMed Central  Google Scholar 

  108. Tedja MS, Wojciechowski R, Hysi PG, et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for Refractive error. Nat Genet. 2018;50:834–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Young FA, Leary GA, Baldwin WR, et al. The transmission of refractive errors within Eskimo families. Am J Optom Arch Am Acad Optom. 1969;46:676–85.

    Article  CAS  PubMed  Google Scholar 

  110. Ip JM, Saw SM, Rose KA, et al. Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci. 2008;49:2903–10.

    Article  PubMed  Google Scholar 

  111. Rose KA, Morgan IG, Smith W, et al. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol. 2008;126:527–30.

    Article  PubMed  Google Scholar 

  112. Dirani M, Tong L, Gazzard G, et al. Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol. 2009;93:997–1000.

    Article  CAS  PubMed  Google Scholar 

  113. Jones LA, Sinnott LT, Mutti DO, et al. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci. 2007;48:3524–32.

    Article  PubMed  Google Scholar 

  114. Yi JH, Li RR. Influence of near-work and outdoor activities on myopia progression in school children. Zhongguo Dang Dai Er Ke Za Zhi. 2011;13:32–5.

    PubMed  Google Scholar 

  115. French AN, Morgan IG, Mitchell P, Rose KA. Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study. Ophthalmology. 2013;120:2100–8.

    Article  PubMed  Google Scholar 

  116. Li SM, Li H, Li SY, et al. Time outdoors and myopia progression over 2 years in Chinese children: the Anyang childhood eye study. Invest Ophthalmol Vis Sci. 2015;56:4734–40.

    Article  PubMed  Google Scholar 

  117. Mirshahi A, Ponto KA, Hoehn R, et al. Myopia and level of education: results from the Gutenberg health study. Ophthalmology. 2014;121:2047–52.

    Article  PubMed  Google Scholar 

  118. Saw SM, Cheng A, Fong A, et al. School grades and myopia. Ophthalmic Physiol Opt. 2007;27:126–9.

    Article  PubMed  Google Scholar 

  119. Morgan IG, Rose KA. Myopia and international educational performance. Ophthalmic Physiol Opt. 2013;33:329–38.

    Article  PubMed  Google Scholar 

  120. Saxena R, Vashist P, Tandon R, et al. Incidence and progression of myopia and associated factors in Urban School children in Delhi: the North India myopia study (Nim study). PLoS One. 2017;12:e0189774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Smith GD, Ebrahim S. ‘Mendelian Randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.

    Article  PubMed  Google Scholar 

  122. Mountjoy E, Davies NM, Plotnikov D, et al. Education and myopia: assessing the direction of causality by Mendelian randomisation. BMJ. 2018;361:k2022.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Charman WN. Near vision, lags of accommodation and myopia. Ophthalmic Physiol Opt. 1999;19:126–33.

    Article  CAS  PubMed  Google Scholar 

  124. Mutti DO, Hayes JR, Mitchell GL, et al. Refractive error, axial length, and relative peripheral Refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2007;48:2510–9.

    Article  PubMed  Google Scholar 

  125. Charman WN, Radhakrishnan H. Peripheral refraction and the development of Refractive error: a review. Ophthalmic Physiol Opt. 2010;30:321–38.

    Article  PubMed  Google Scholar 

  126. Smith EL 3rd, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central Refractive development in infant monkeys. Vis Res. 2009;49:2386–92.

    Article  PubMed  Google Scholar 

  127. Norton TT, Siegwart JT Jr, Amedo AO. Effectiveness of hyperopic defocus, minimal defocus, or myopic defocus in competition with a Myopiagenic stimulus in tree shrew eyes. Invest Ophthalmol Vis Sci. 2006;47:4687–99.

    Article  PubMed  Google Scholar 

  128. Zhu X, Winawer JA, Wallman J. Potency of myopic defocus in spectacle Lens compensation. Invest Ophthalmol Vis Sci. 2003;44:2818–27.

    Article  PubMed  Google Scholar 

  129. Hung LF, Crawford ML, Smith EL. Spectacle lenses Alter eye growth and the Refractive status of Young monkeys. Nat Med. 1995;1:761–5.

    Article  CAS  PubMed  Google Scholar 

  130. Adler D, Millodot M. The possible effect of Undercorrection on myopic progression in children. Clin Exp Optom. 2006;89:315–21.

    Article  PubMed  Google Scholar 

  131. Chung K, Mohidin N, O'Leary DJ. Undercorrection of myopia enhances rather than inhibits myopia progression. Vis Res. 2002;42:2555–9.

    Article  PubMed  Google Scholar 

  132. Vasudevan B, Esposito C, Peterson C, et al. Under-correction of human myopia--is it Myopigenic?: a retrospective analysis of clinical refraction data. J Optom. 2014;7:147–52.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rose KA, Morgan IG, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115:1279–85.

    Article  PubMed  Google Scholar 

  134. Guggenheim JA, Northstone K, McMahon G, et al. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Invest Ophthalmol Vis Sci. 2012;53:2856–65.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Read SA, Collins MJ, Vincent SJ. Light exposure and physical activity in myopic and Emmetropic children. Optom Vis Sci. 2014;91:330–41.

    Article  PubMed  Google Scholar 

  136. Guo Y, Liu LJ, Xu L, et al. Outdoor activity and myopia among primary students in rural and urban regions of Beijing. Ophthalmology. 2013;120:277–83.

    Article  PubMed  Google Scholar 

  137. Wu PC, Tsai CL, Hu CH, Yang YH. Effects of outdoor activities on myopia among rural school children in Taiwan. Ophthalmic Epidemiol. 2010;17:338–42.

    Article  PubMed  Google Scholar 

  138. French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013;114:58–68.

    Article  CAS  PubMed  Google Scholar 

  139. Ngo C, Saw SM, Dharani R, Flitcroft I. Does sunlight (bright lights) explain the protective effects of outdoor activity against myopia? Ophthalmic Physiol Opt. 2013;33:368–72.

    Article  PubMed  Google Scholar 

  140. Sherwin JC, Reacher MH, Keogh RH, et al. The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology. 2012;119:2141–51.

    Article  PubMed  Google Scholar 

  141. French AN, Morgan IG, Burlutsky G, et al. Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren. Ophthalmology. 2013;120:1482–91.

    Article  PubMed  Google Scholar 

  142. Lin Z, Gao TY, Vasudevan B, et al. Near work, outdoor activity, and myopia in children in rural China: the Handan offspring myopia study. BMC Ophthalmol. 2017;17:203.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chua SY, Ikram MK, Tan CS, et al. Relative contribution of risk factors for early-onset myopia in Young Asian children. Invest Ophthalmol Vis Sci. 2015;56:8101–7.

    Article  CAS  PubMed  Google Scholar 

  144. McKnight CM, Sherwin JC, Yazar S, et al. Myopia in Young adults is inversely related to an objective marker of ocular Sun exposure: the Western Australian Raine cohort study. Am J Ophthalmol. 2014;158:1079–85.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Choi JA, Han K, Park YM, La TY. Low serum 25-Hydroxyvitamin D is associated with myopia in Korean adolescents. Invest Ophthalmol Vis Sci. 2014;55:2041.

    Article  CAS  PubMed  Google Scholar 

  146. Mutti DO, Marks AR. Blood levels of vitamin D in teens and Young adults with myopia. Optom Vis Sci. 2011;88:377–82.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Guggenheim JA, Williams C, Northstone K, et al. Does vitamin D mediate the protective effects of time outdoors on myopia? Findings from a prospective birth cohort. Invest Ophthalmol Vis Sci. 2014;55:8550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tideman JW, Polling JR, Voortman T, et al. Low serum vitamin D is associated with axial length and risk of myopia in Young children. Eur J Epidemiol. 2016;31:491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fulk GW, Cyert LA, Parker DA. Seasonal variation in myopia progression and ocular elongation. Optom Vis Sci. 2002;79:46–51.

    Article  PubMed  Google Scholar 

  150. Gwiazda J, Deng L, Manny R, et al. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Invest Ophthalmol Vis Sci. 2014;55:752–8.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Donovan L, Sankaridurg P, Ho A, et al. Myopia progression in Chinese children is slower in summer than in winter. Optom Vis Sci. 2012;89:1196–202.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Fujiwara M, Hasebe S, Nakanishi R, et al. Seasonal variation in myopia progression and axial elongation: an evaluation of Japanese children participating in a myopia control trial. Jpn J Ophthalmol. 2012;56:401–6.

    Article  PubMed  Google Scholar 

  153. Jacobsen N, Jensen H, Goldschmidt E. Does the level of physical activity in university students influence development and progression of myopia?--a 2-year prospective cohort study. Invest Ophthalmol Vis Sci. 2008;49:1322–7.

    Article  PubMed  Google Scholar 

  154. Dirani M, Chan YH, Gazzard G, et al. Prevalence of Refractive error in Singaporean Chinese children: the strabismus, amblyopia, and Refractive error in Young Singaporean children (stars) study. Invest Ophthalmol Vis Sci. 2010;51:1348–55.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Deere K, Williams C, Leary S, et al. Myopia and later physical activity in adolescence: a prospective study. Br J Sports Med. 2009;43:542–4.

    Article  CAS  PubMed  Google Scholar 

  156. Wu PC, Tsai CL, Wu HL, et al. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120:1080–5.

    Article  PubMed  Google Scholar 

  157. He M, Xiang F, Zeng Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA. 2015;314:1142–8.

    Article  CAS  PubMed  Google Scholar 

  158. Jin JX, Hua WJ, Jiang X, et al. Effect of outdoor activity on myopia onset and progression in school-aged children in Northeast China: the Sujiatun eye care study. BMC Ophthalmol. 2015;15:73.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Xiong S, Sankaridurg P, Naduvilath T, et al. Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Acta Ophthalmol. 2017;95:551–66.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Fan Q, Wojciechowski R, Kamran Ikram M, et al. Education influences the association between genetic variants and Refractive error: a meta-analysis of five Singapore studies. Hum Mol Genet. 2014;23:546–54.

    Article  CAS  PubMed  Google Scholar 

  161. Verhoeven VJ, Buitendijk GH, Consortium for Refractive E, et al. Education influences the role of genetics in myopia. Eur J Epidemiol. 2013;28:973–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fan Q, Guo X, Tideman JW, et al. Childhood gene-environment interactions and age-dependent effects of genetic variants associated with Refractive error and myopia: the cream Consortium. Sci Rep. 2016;6:25853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha S. Y. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, S.S.Y., Mackey, D.A. (2021). Regional Differences in Prevalence of Myopia: Genetic or Environmental Effects?. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume III. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9184-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9184-6_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9183-9

  • Online ISBN: 978-981-15-9184-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics