Skip to main content

Vascular Basement Membrane Thickening: Basis of Disease Pathology in Diabetic Retinopathy

  • Chapter
  • First Online:
Advances in Vision Research, Volume III

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Diabetic retinopathy (DR) is one of the most common forms of microvascular complications of diabetes. Unfortunately, there is no cure for this debilitating ocular complication that holds particular significance due to its detrimental effects on vision, which ultimately leads to vision loss and blindness. Hyperglycemia, the most prominent characteristic of diabetes, plays a major role in initiating the development and progression of DR. One of the histological hallmarks of the pathogenesis of DR is characterized by the thickening of the basement membrane (BM). Abnormalities in the BM ultrastructure affect retinal vascular cell attachment and compromises the inner blood–retinal barrier. While strides are being made to better understand the cellular events regulating retinal capillary BM thickening, including high glucose-induced upregulation of type IV collagen, fibronectin, and laminin genes together with decreased matrix metalloproteinase (MMP) activities, and its role in the pathogenesis of DR, the focus is now to apply effective strategies to prevent BM thickening to establish its therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Todd RB, Bowman W. The physiological anatomy and physiology of man. Philadelphia : Blanchard and Lea; 1857.

    Google Scholar 

  2. Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol. 2011;3(2).

    Google Scholar 

  3. Farquhar MG. The Glomerular Basement Membrane. In: Hay ED, editor. Cell biology of the extracellular matrix. Boston, MA: Springer. 1981:335–78.

    Google Scholar 

  4. Podesta F, Roth T, Ferrara F, Cagliero E, Lorenzi M. Cytoskeletal changes induced by excess extracellular matrix impair endothelial cell replication. Diabetologia. 1997;40(8):879–86.

    Article  CAS  PubMed  Google Scholar 

  5. Jeon H, Ono M, Kumagai C, Miki K, Morita A, Kitagawa Y. Pericytes from microvessel fragment produce type IV collagen and multiple laminin isoforms. Biosci Biotechnol Biochem. 1996;60(5):856–61.

    Article  CAS  PubMed  Google Scholar 

  6. Bianchi E, Ripandelli G, Taurone S, Feher J, Plateroti R, Kovacs I, et al. Age and diabetes related changes of the retinal capillaries: An ultrastructural and immunohistochemical study. Int J Immunopathol Pharmacol. 2016;29(1):40–53.

    Article  CAS  PubMed  Google Scholar 

  7. Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol. 1992;27(1-2):93–127.

    Article  CAS  PubMed  Google Scholar 

  8. Schittny JC, Timpl R, Engel J. High resolution immunoelectron microscopic localization of functional domains of laminin, nidogen, and heparan sulfate proteoglycan in epithelial basement membrane of mouse cornea reveals different topological orientations. J Cell Biol. 1988;107(4):1599–610.

    Article  CAS  PubMed  Google Scholar 

  9. Fidler AL, Darris CE, Chetyrkin SV, Pedchenko VK, Boudko SP, Brown KL, et al. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. Elife. 2017;6

    Google Scholar 

  10. Patthy L. Genome evolution and the evolution of exon-shuffling—a review. Gene. 1999;238(1):103–14.

    Article  CAS  PubMed  Google Scholar 

  11. Roy S, Ha J, Trudeau K, Beglova E. Vascular basement membrane thickening in diabetic retinopathy. Curr Eye Res. 2010;35(12):1045–56.

    Article  PubMed  Google Scholar 

  12. Mosher DF. Fibronectin. San Diego: Academic; 1989.

    Google Scholar 

  13. Hynes RO. Fibronectins. New York: Springer; 1990.

    Google Scholar 

  14. Yamada KM, Clark RAF. Provisional Matrix. 1988;51–93.

    Google Scholar 

  15. Carsons SE. Fibronectin in health and disease; 2018.

    Book  Google Scholar 

  16. Gay S, Martinez-Hernandez A, Rhodes RK, Miller EJ. The collagenous exocytoskeleton of smooth muscle cells. Coll Relat Res. 1981;1(4):377–84.

    Article  CAS  PubMed  Google Scholar 

  17. Boudko SP, Danylevych N, Hudson BG, Pedchenko VK. Basement membrane collagen IV: Isolation of functional domains. Methods Cell Biol. 2018;143:171–85.

    Article  CAS  PubMed  Google Scholar 

  18. Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. FASEB J. 1990;4(6):1577–90.

    Article  CAS  PubMed  Google Scholar 

  19. Anazco C, Lopez-Jimenez AJ, Rafi M, Vega-Montoto L, Zhang MZ, Hudson BG, et al. Lysyl oxidase-like-2 cross-links collagen IV of glomerular basement membrane. J Biol Chem. 2016;291(50):25999–6012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vanacore R, Ham AJ, Voehler M, Sanders CR, Conrads TP, Veenstra TD, et al. A sulfilimine bond identified in collagen IV. Science. 2009;325(5945):1230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beck K, Hunter I, Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J. 1990;4(2):148–60.

    Article  CAS  PubMed  Google Scholar 

  22. Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin—a glycoprotein from basement membranes. J Biol Chem. 1979;254(19):9933–7.

    Article  CAS  PubMed  Google Scholar 

  23. Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989;180(3):487–502.

    Article  CAS  PubMed  Google Scholar 

  24. Paulsson M. Noncollagenous proteins of basement membranes. Coll Relat Res. 1987;7(6):443–61.

    Article  CAS  PubMed  Google Scholar 

  25. Hassell JR, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980;77(8):4494–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kallunki P, Tryggvason K. Human basement membrane heparan sulfate proteoglycan core protein: a 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Cell Biol. 1992;116(2):559–71.

    Article  CAS  PubMed  Google Scholar 

  27. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. 2011;3(7).

    Google Scholar 

  28. Carlin B, Jaffe R, Bender B, Chung AE. Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem. 1981;256(10):5209–14.

    Article  CAS  PubMed  Google Scholar 

  29. Paulsson M, Deutzmann R, Dziadek M, Nowack H, Timpl R, Weber S, et al. Purification and structural characterization of intact and fragmented nidogen obtained from a tumor basement membrane. Eur J Biochem. 1986;156(3):467–78.

    Article  CAS  PubMed  Google Scholar 

  30. Paulsson M, Aumailley M, Deutzmann R, Timpl R, Beck K, Engel J. Laminin-nidogen complex. Extraction with chelating agents and structural characterization. Eur J Biochem. 1987;166(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  31. Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Wiedemann H, et al. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 1991;10(11):3137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gunning P, Leavitt J, Muscat G, Ng SY, Kedes L. A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci U S A. 1987;84(14):4831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aumailley M, Battaglia C, Mayer U, Reinhardt D, Nischt R, Timpl R, et al. Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int. 1993;43(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  34. Graf J, Iwamoto Y, Sasaki M, Martin GR, Kleinman HK, Robey FA, et al. Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell. 1987;48(6):989–96.

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki M, Kleinman HK, Huber H, Deutzmann R, Yamada Y. Laminin, a multidomain protein. The A chain has a unique globular domain and homology with the basement membrane proteoglycan and the laminin B chains. J Biol Chem. 1988;263(32):16536–44.

    Article  CAS  PubMed  Google Scholar 

  36. Chakravarti S, Tam MF, Chung AE. The basement membrane glycoprotein entactin promotes cell attachment and binds calcium ions. J Biol Chem. 1990;265(18):10597–603.

    Article  CAS  PubMed  Google Scholar 

  37. Abari E, Huemmeke M, Semkova I, Hartmann U, Kunze A, Kociok N, et al. Basement membrane alterations in diabetic retina of STZ-treated mice. E-Abstract 2009. In: ARVO 2009 conference; April 2009.

    Google Scholar 

  38. Bader BL, Smyth N, Nedbal S, Miosge N, Baranowsky A, Mokkapati S, et al. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol Cell Biol. 2005;25(15):6846–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Preissner KT, May AE, Wohn KD, Germer M, Kanse SM. Molecular crosstalk between adhesion receptors and proteolytic cascades in vascular remodelling. Thromb Haemost. 1997;78(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  40. Seiffert D. Constitutive and regulated expression of vitronectin. Histol Histopathol. 1997;12(3):787–97.

    CAS  PubMed  Google Scholar 

  41. Gechtman Z, Belleli A, Lechpammer S, Shaltiel S. The cluster of basic amino acids in vitronectin contributes to its binding of plasminogen activator inhibitor-1: evidence from thrombin-, elastase- and plasmin-cleaved vitronectins and anti-peptide antibodies. Biochem J. 1997;325(Pt 2):339–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Borsey DQ, Prowse CV, Gray RS, Dawes J, James K, Elton RA, et al. Platelet and coagulation factors in proliferative diabetic retinopathy. J Clin Pathol. 1984;37(6):659–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watanabe K, Okamoto F, Yokoo T, Iida KT, Suzuki H, Shimano H, et al. SPARC is a major secretory gene expressed and involved in the development of proliferative diabetic retinopathy. J Atheroscler Thromb. 2009;16(2):69–76.

    Article  CAS  PubMed  Google Scholar 

  44. Nischt R, Pottgiesser J, Krieg T, Mayer U, Aumailley M, Timpl R. Recombinant expression and properties of the human calcium-binding extracellular matrix protein BM-40. Eur J Biochem. 1991;200(2):529–36.

    Article  CAS  PubMed  Google Scholar 

  45. Sage H, Vernon RB, Funk SE, Everitt EA, Angello J. SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca+2-dependent binding to the extracellular matrix. J Cell Biol. 1989;109(1):341–56.

    Article  CAS  PubMed  Google Scholar 

  46. Lane TF, Sage EH. Functional mapping of SPARC: peptides from two distinct Ca+(+)-binding sites modulate cell shape. J Cell Biol. 1990;111(6 Pt 2):3065–76.

    Article  CAS  PubMed  Google Scholar 

  47. Smyth N, Vatansever HS, Meyer M, Frie C, Paulsson M, Edgar D. The targeted deletion of the LAMC1 gene. Ann N Y Acad Sci. 1998;857:283–6.

    Article  CAS  PubMed  Google Scholar 

  48. Li S, Harrison D, Carbonetto S, Fassler R, Smyth N, Edgar D, et al. Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J Cell Biol. 2002;157(7):1279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li S, Bordoy R, Stanchi F, Moser M, Braun A, Kudlacek O, et al. PINCH1 regulates cell-matrix and cell-cell adhesions, cell polarity and cell survival during the peri-implantation stage. J Cell Sci. 2005;118(Pt 13):2913–21.

    Article  CAS  PubMed  Google Scholar 

  50. McKee KK, Harrison D, Capizzi S, Yurchenco PD. Role of laminin terminal globular domains in basement membrane assembly. J Biol Chem. 2007;282(29):21437–47.

    Article  CAS  PubMed  Google Scholar 

  51. McKee KK, Capizzi S, Yurchenco PD. Scaffold-forming and adhesive contributions of synthetic laminin-binding proteins to basement membrane assembly. J Biol Chem. 2009;284(13):8984–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kalb E, Engel J. Binding and calcium-induced aggregation of laminin onto lipid bilayers. J Biol Chem. 1991;266(28):19047–52.

    Article  CAS  PubMed  Google Scholar 

  53. Colognato H, MacCarrick M, O’Rear JJ, Yurchenco PD. The laminin alpha2-chain short arm mediates cell adhesion through both the alpha1beta1 and alpha2beta1 integrins. J Biol Chem. 1997;272(46):29330–6.

    Article  CAS  PubMed  Google Scholar 

  54. Ghosh K, Ingber DE. Micromechanical control of cell and tissue development: implications for tissue engineering. Adv Drug Deliv Rev. 2007;59(13):1306–18.

    Article  CAS  PubMed  Google Scholar 

  55. Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U S A. 2008;105(32):11305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scholl ZN, Yang W, Marszalek PE. Chaperones rescue luciferase folding by separating its domains. J Biol Chem. 2014;289(41):28607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang X, Scott HA, Monickaraj F, Xu J, Ardekani S, Nitta CF, et al. Basement membrane stiffening promotes retinal endothelial activation associated with diabetes. FASEB J. 2016;30(2):601–11.

    Article  CAS  PubMed  Google Scholar 

  58. Hartge MM, Unger T, Kintscher U. The endothelium and vascular inflammation in diabetes. Diab Vasc Dis Res. 2007;4(2):84–8.

    Article  PubMed  Google Scholar 

  59. Shirwany NA, Zou MH. Vascular inflammation is a missing link for diabetes-enhanced atherosclerotic cardiovascular diseases. Front Biosci (Landmark Ed). 2012;17:1140–64.

    Google Scholar 

  60. Jayadev R, Sherwood DR. Basement membranes. Curr Biol. 2017;27(6):R207–R11.

    Article  CAS  PubMed  Google Scholar 

  61. Timpl R, Wiedemann H, van Delden V, Furthmayr H, Kuhn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem. 1981;120(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  62. Welling LW, Grantham JJ. Physical properties of isolated perfused renal tubules and tubular basement membranes. J Clin Invest. 1972;51(5):1063–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guadagno TM, Ohtsubo M, Roberts JM, Assoian RK. A link between cyclin A expression and adhesion-dependent cell cycle progression. Science. 1993;262(5139):1572–5.

    Article  CAS  PubMed  Google Scholar 

  64. Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell. 1994;77(4):477–8.

    Article  CAS  PubMed  Google Scholar 

  65. Aharoni D, Meiri I, Atzmon R, Vlodavsky I, Amsterdam A. Differential effect of components of the extracellular matrix on differentiation and apoptosis. Curr Biol. 1997;7(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  66. Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Development. 1993;117(4):1183–98.

    Article  CAS  PubMed  Google Scholar 

  67. Lin CQ, Bissell MJ. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J. 1993;7(9):737–43.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Z, Vuori K, Reed JC, Ruoslahti E. The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci U S A. 1995;92(13):6161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989;105(2):223–35.

    Article  CAS  PubMed  Google Scholar 

  70. Boudreau N, Sympson CJ, Werb Z, Bissell MJ. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science. 1995;267(5199):891–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, et al. Brain and retinal pericytes: origin, function and role. Front Cell Neurosci. 2016;10:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kawamura H, Sugiyama T, Wu DM, Kobayashi M, Yamanishi S, Katsumura K, et al. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J Physiol. 2003;551(Pt 3):787–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu DM, Kawamura H, Sakagami K, Kobayashi M, Puro DG. Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol. 2003;284(6):H2083–90.

    Article  CAS  PubMed  Google Scholar 

  74. Senger DR, Davis GE. Angiogenesis. Cold Spring Harb Perspect Biol. 2011;3(8):a005090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715.

    Article  CAS  PubMed  Google Scholar 

  76. Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, et al. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development. 2007;134(23):4177–86.

    Article  CAS  PubMed  Google Scholar 

  77. Kreuger J, Perez L, Giraldez AJ, Cohen SM. Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity. Dev Cell. 2004;7(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  78. Kirkpatrick CA, Dimitroff BD, Rawson JM, Selleck SB. Spatial regulation of Wingless morphogen distribution and signaling by Dally-like protein. Dev Cell. 2004;7(4):513–23.

    Article  CAS  PubMed  Google Scholar 

  79. Yurchenco PD. Assembly of basement membranes. Ann N Y Acad Sci. 1990;580:195–213.

    Article  CAS  PubMed  Google Scholar 

  80. Cagliero E, Maiello M, Boeri D, Roy S, Lorenzi M. Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J Clin Invest. 1988;82(2):735–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reddi AS. Collagen metabolism in the retina of normal and diabetic rats. Exp Eye Res. 1985;41(3):345–52.

    Article  CAS  PubMed  Google Scholar 

  82. Roy S, Sala R, Cagliero E, Lorenzi M. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci U S A. 1990;87(1):404–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Poulsom R, Kurkinen M, Prockop DJ, Boot-Handford RP. Increased steady-state levels of laminin B1 mRNA in kidneys of long-term streptozotocin-diabetic rats. No effect of an aldose reductase inhibitor. J Biol Chem. 1988;263(21):10072–6.

    Article  CAS  PubMed  Google Scholar 

  84. Roy S, Lorenzi M. Early biosynthetic changes in the diabetic-like retinopathy of galactose-fed rats. Diabetologia. 1996;39(6):735–8.

    Article  CAS  PubMed  Google Scholar 

  85. Chronopoulos A, Roy S, Beglova E, Mansfield K, Wachtman L, Roy S. Hyperhexosemia-induced retinal vascular pathology in a novel primate model of diabetic retinopathy. Diabetes. 2015;64(7):2603–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee SE, Ma W, Rattigan EM, Aleshin A, Chen L, Johnson LL, et al. Ultrastructural features of retinal capillary basement membrane thickening in diabetic swine. Ultrastruct Pathol. 2010;34(1):35–41.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gabbay KH. The sorbitol pathway and the complications of diabetes. N Engl J Med. 1973;288(16):831–6.

    Article  CAS  PubMed  Google Scholar 

  88. Szwergold BS, Kappler F, Brown TR. Identification of fructose 3-phosphate in the lens of diabetic rats. Science. 1990;247(4941):451–4.

    Article  CAS  PubMed  Google Scholar 

  89. Chakrabarti S, Sima AA. Effect of aldose reductase inhibition and insulin treatment on retinal capillary basement membrane thickening in BB rats. Diabetes. 1989;38(9):1181–6.

    Article  CAS  PubMed  Google Scholar 

  90. Robison WG Jr, Kador PF, Kinoshita JH. Retinal capillaries: basement membrane thickening by galactosemia prevented with aldose reductase inhibitor. Science. 1983;221(4616):1177–9.

    Article  CAS  PubMed  Google Scholar 

  91. Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest. 1996;97(12):2883–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stribling D. Clinical trials with aldose reductase inhibitors. Exp Eye Res. 1990;50(6):621–4.

    Article  CAS  PubMed  Google Scholar 

  93. Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007;55(6):498–510.

    Article  CAS  PubMed  Google Scholar 

  94. Suzuki S, Ebihara I, Tomino Y, Koide H. Transcriptional activation of matrix genes by transforming growth factor beta 1 in mesangial cells. Exp Nephrol. 1993;1(4):229–37.

    CAS  PubMed  Google Scholar 

  95. Donnelly R, Idris I, Forrester JV. Protein kinase C inhibition and diabetic retinopathy: a shot in the dark at translational research. Br J Ophthalmol. 2004;88(1):145–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bucala R, Cerami A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharmacol. 1992;23:1–34.

    Article  CAS  PubMed  Google Scholar 

  98. Stitt AW. Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol. 2001;85(6):746–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ono Y, Aoki S, Ohnishi K, Yasuda T, Kawano K, Tsukada Y. Increased serum levels of advanced glycation end-products and diabetic complications. Diabetes Res Clin Pract. 1998;41(2):131–7.

    Article  CAS  PubMed  Google Scholar 

  100. Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest. 1997;99(3):457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol. 1997;150(2):523–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hammes HP, Brownlee M, Edelstein D, Saleck M, Martin S, Federlin K. Aminoguanidine inhibits the development of accelerated diabetic retinopathy in the spontaneous hypertensive rat. Diabetologia. 1994;37(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  103. Li Y, Liu S, Zhang Z, Xu Q, Xie F, Wang J, et al. RAGE mediates accelerated diabetic vein graft atherosclerosis induced by combined mechanical stress and AGEs via synergistic ERK activation. PLoS One. 2012;7(4):e35016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hu P, Lai D, Lu P, Gao J, He H. ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells. Int J Mol Med. 2012;29(4):613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chang T, Wang R, Olson DJ, Mousseau DD, Ross AR, Wu L. Modification of Akt1 by methylglyoxal promotes the proliferation of vascular smooth muscle cells. FASEB J. 2011;25(5):1746–57.

    Article  CAS  PubMed  Google Scholar 

  106. Okamoto T, Yamagishi S, Inagaki Y, Amano S, Koga K, Abe R, et al. Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J. 2002;16(14):1928–30.

    Article  CAS  PubMed  Google Scholar 

  107. Nagaraj RH, Oya-Ito T, Bhat M, Liu B. Dicarbonyl stress and apoptosis of vascular cells: prevention by alphaB-crystallin. Ann N Y Acad Sci. 2005;1043:158–65.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang H, Tang L, Chen S, Yang Y, Chen M, Luo J. Effect of advanced glycation end products on the expression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor proteins in RF/6A cells. Exp Ther Med. 2013;5(5):1519–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Treins C, Giorgetti-Peraldi S, Murdaca J, Van Obberghen E. Regulation of vascular endothelial growth factor expression by advanced glycation end products. J Biol Chem. 2001;276(47):43836–41.

    Article  CAS  PubMed  Google Scholar 

  110. Greenwood MD, Ressler MJ, Audette JL, Laturnus DI, Chhoun R, Teiken JM, et al. Significant retinal capillary basement membrane thickening in hyperglycemic and normoglycemic diabetic-prone (DP) BB Wistar rats. Ultrastruct Pathol. 2011;35(2):97–105.

    Article  PubMed  Google Scholar 

  111. Degenhardt TP, Alderson NL, Arrington DD, Beattie RJ, Basgen JM, Steffes MW, et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. 2002;61(3):939–50.

    Article  CAS  PubMed  Google Scholar 

  112. Stitt AW. The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp Mol Pathol. 2003;75(1):95–108.

    Article  CAS  PubMed  Google Scholar 

  113. Tryggvason K, Patrakka J. Thin basement membrane nephropathy. J Am Soc Nephrol. 2006;17(3):813–22.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang J, Wang Y, Gurung P, Wang T, Li L, Zhang R, et al. The relationship between the thickness of glomerular basement membrane and renal outcomes in patients with diabetic nephropathy. Acta Diabetol. 2018;55(7):669–79.

    Article  PubMed  Google Scholar 

  115. Orasanu G, Plutzky J. The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol. 2009;53(5 Suppl):S35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wagener HP, Wilder RM. The retinitis of diabetes mellitus: preliminary report. JAMA. 1921;76(6):515–7.

    Google Scholar 

  117. Ashton N. Vascular basement membrane changes in diabetic retinopathy. Montgomery lecture, 1973. Br J Ophthalmol. 1974;58(4):344–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Naccarato R, Maschio G, Sirigu F, Previato G, Rizzo A, Mioni G, et al. The muscle in diabetes mellitus. A histologic (light and electron microscope) and biochemical study by means of needle biopsy. Virchows Arch B Cell Pathol. 1970;4(4):283–93.

    CAS  PubMed  Google Scholar 

  119. Kozak WM, Marker NA, Elmer KK. Effects of aldose reductase inhibition on the retina and health indices of streptozotocin-diabetic rats. Doc Ophthalmol. 1986;64(4):355–77.

    Article  CAS  PubMed  Google Scholar 

  120. Xi YP, Nette EG, King DW, Rosen M. Age-related changes in normal human basement membrane. Mech Ageing Dev. 1982;19(4):315–24.

    Article  CAS  PubMed  Google Scholar 

  121. Beltramo E, Pomero F, Allione A, D’Alu F, Ponte E, Porta M. Pericyte adhesion is impaired on extracellular matrix produced by endothelial cells in high hexose concentrations. Diabetologia. 2002;45(3):416–9.

    Article  CAS  PubMed  Google Scholar 

  122. Tien T, Zhang J, Muto T, Kim D, Sarthy VP, Roy S. High glucose induces mitochondrial dysfunction in retinal muller cells: implications for diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(7):2915–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oshitari T, Polewski P, Chadda M, Li AF, Sato T, Roy S. Effect of combined antisense oligonucleotides against high-glucose- and diabetes-induced overexpression of extracellular matrix components and increased vascular permeability. Diabetes. 2006;55(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  124. Rayat CS, Joshi K, Sakhuja V, Datta U. Glomerular basement membrane thickness in normal adults and its application to the diagnosis of thin basement membrane disease: an Indian study. Indian J Pathol Microbiol. 2005;48(4):453–8.

    CAS  PubMed  Google Scholar 

  125. Moriya T, Tanaka K, Moriya R. Glomerular structural changes and structural-functional relationships at early stage of diabetic nephropathy in Japanese type 2 diabetic patients. Med Electron Microsc. 2000;33(3):115–22.

    Article  CAS  PubMed  Google Scholar 

  126. Longhurst J, Capone RJ, Zelis R. Evaluation of skeletal muscle capillary basement membrane thickness in congestive heart failure. Chest. 1975;67(2):195–8.

    Article  CAS  PubMed  Google Scholar 

  127. Siperstein MD, Unger RH, Madison LL. Studies of muscle capillary basement membranes in normal subjects, diabetic, and prediabetic patients. J Clin Invest. 1968;47(9):1973–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lindsay DC, Anand IS, Bennett JG, Pepper JR, Yacoub MH, Rothery SM, et al. Ultrastructural analysis of skeletal muscle. Microvascular dimensions and basement membrane thickness in chronic heart failure. Eur Heart J. 1994;15(11):1470–6.

    Article  CAS  PubMed  Google Scholar 

  129. Quabbe HJ, Schenk KE, Schneider H, Semrau M, Hovener G. Absence of muscle capillary basement membrane thickening and retinopathy in patients with myocardial infarction and impaired i.v. glucose tolerance. Acta Diabetol Lat. 1983;20(4):321–7.

    Article  CAS  PubMed  Google Scholar 

  130. Bae HY, Oh KT, Chae JK, Chung CH, Hong SP, Cho KK. Subepidermal capillary basement membrane thickness of the skin obtained by punch biopsy in patients with non insulin dependent diabetes mellitus. Korean J Intern Med. 1987;2(2):234–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Huang TW. Composite epithelial and endothelial basal laminas in human lungs. A structural basis for their separation and apposition in reaction to injury. Am J Pathol. 1978;93(3):681–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chronopoulos A, Tang A, Beglova E, Trackman PC, Roy S. High glucose increases lysyl oxidase expression and activity in retinal endothelial cells: mechanism for compromised extracellular matrix barrier function. Diabetes. 2010;59(12):3159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chronopoulos A, Trudeau K, Roy S, Huang H, Vinores SA, Roy S. High glucose-induced altered basement membrane composition and structure increases trans-endothelial permeability: implications for diabetic retinopathy. Curr Eye Res. 2011;36(8):747–53.

    Article  CAS  PubMed  Google Scholar 

  134. Cherian S, Roy S, Pinheiro A, Roy S. Tight glycemic control regulates fibronectin expression and basement membrane thickening in retinal and glomerular capillaries of diabetic rats. Invest Ophthalmol Vis Sci. 2009;50(2):943–9.

    Article  PubMed  Google Scholar 

  135. Engerman RL, Kern TS, Garment MB. Capillary basement membrane in retina, kidney, and muscle of diabetic dogs and galactosemic dogs and its response to 5 years aldose reductase inhibition. J Diabetes Complications. 1993;7(4):241–5.

    Article  CAS  PubMed  Google Scholar 

  136. Carlson EC, Audette JL, Veitenheimer NJ, Risan JA, Laturnus DI, Epstein PN. Ultrastructural morphometry of capillary basement membrane thickness in normal and transgenic diabetic mice. Anat Rec A Discov Mol Cell Evol Biol. 2003;271(2):332–41.

    Article  PubMed  Google Scholar 

  137. Hainsworth DP, Katz ML, Sanders DA, Sanders DN, Wright EJ, Sturek M. Retinal capillary basement membrane thickening in a porcine model of diabetes mellitus. Comp Med. 2002;52(6):523–9.

    CAS  PubMed  Google Scholar 

  138. Mansour SZ, Hatchell DL, Chandler D, Saloupis P, Hatchell MC. Reduction of basement membrane thickening in diabetic cat retina by sulindac. Invest Ophthalmol Vis Sci. 1990;31(3):457–63.

    CAS  PubMed  Google Scholar 

  139. Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol. 2003;264(1):275–88.

    Article  CAS  PubMed  Google Scholar 

  140. Roy S, Roth T. Proliferative effect of high glucose is modulated by antisense oligonucleotides against fibronectin in rat endothelial cells. Diabetologia. 1997;40(9):1011–7.

    Article  CAS  PubMed  Google Scholar 

  141. A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Sorbinil Retinopathy Trial Research Group. Arch Ophthalmol. 1990;108(9):1234–44.

    Google Scholar 

  142. Stitt A, Gardiner TA, Alderson NL, Canning P, Frizzell N, Duffy N, et al. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes. 2002;51(9):2826–32.

    Article  CAS  PubMed  Google Scholar 

  143. Dosso AA, Rungger-Brandle E, Leuenberger PM. Ultrastructural alterations in capillaries of the diabetic hypertensive rat retina: protective effects of ACE inhibition. Diabetologia. 2004;47(7):1196–201.

    Article  CAS  PubMed  Google Scholar 

  144. Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest. 1994;93(6):2431–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ray PE, Bruggeman LA, Horikoshi S, Aguilera G, Klotman PE. Angiotensin II stimulates human fetal mesangial cell proliferation and fibronectin biosynthesis by binding to AT1 receptors. Kidney Int. 1994;45(1):177–84.

    Article  CAS  PubMed  Google Scholar 

  146. Singh R, Alavi N, Singh AK, Leehey DJ. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes. 1999;48(10):2066–73.

    Article  CAS  PubMed  Google Scholar 

  147. Ziyadeh FN, Sharma K, Ericksen M, Wolf G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta. J Clin Invest. 1994;93(2):536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a grant NIH R01EY025528 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayon Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sankaramoorthy, A., Roy, S. (2021). Vascular Basement Membrane Thickening: Basis of Disease Pathology in Diabetic Retinopathy. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume III. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9184-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9184-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9183-9

  • Online ISBN: 978-981-15-9184-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics