Skip to main content

The Retinitis Pigmentosa Genes

  • Chapter
  • First Online:
Advances in Vision Research, Volume III

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Retinitis pigmentosa (RP), the most common form of inherited retinal dystrophies (IRDs), is a monogenic disease with remarkable genetic heterogeneities. All three types of Mendelian inheritance patterns have been found associated with RP, including autosomal dominant, recessive, and X-linked modes. By far, 87 genes and 7 loci have been linked to RP. These genes show variable expression patterns and are involved in multiple biological pathways, such as phototransduction cascade, visual cycle, ciliary structure and transport, and so on. In this chapter, we will talk about genes involved in RP etiology. Currently, no generally applicable treatment has been developed for RP, therefore better insights into the RP etiology will help with better management of RP patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chizzolini M, Galan A, Milan E, Sebastiani A, Costagliola C, Parmeggiani F. Good epidemiologic practice in retinitis pigmentosa: from phenotyping to biobanking. Curr Genomics. 2011;12(4):260–6. https://doi.org/10.2174/138920211795860071. CG-12-260 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368(9549):1795–809. https://doi.org/10.1016/S0140-6736(06)69740-7. S0140-6736(06)69740-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Cremers FP, van de Pol DJ, van Driel M, den Hollander AI, van Haren FJ, Knoers NV, et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet. 1998;7(3):355–62. ddb054 [pii].

    Google Scholar 

  4. Xu M, Eblimit A, Wang J, Li J, Wang F, Zhao L, et al. ADIPOR1 Is Mutated in Syndromic Retinitis Pigmentosa. Hum Mutat. 2016;37(3):246–9. https://doi.org/10.1002/humu.22940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang J, Wang C, Shen Y, Chen N, Wang L, Liang L, et al. A mutation in ADIPOR1 causes nonsyndromic autosomal dominant retinitis pigmentosa. Hum Genet. 2016;135(12):1375–87. https://doi.org/10.1007/s00439-016-1730-2. 10.1007/s00439-016-1730-2 [pii].

  6. Kastner S, Thiemann IJ, Dekomien G, Petrasch-Parwez E, Schreiber S, Akkad DA, et al. Exome sequencing reveals AGBL5 as novel candidate gene and additional variants for retinitis pigmentosa in five Turkish families. Invest Ophthalmol Vis Sci. 2015;56(13):8045–53. https://doi.org/10.1167/iovs.15-17473. 2478946 [pii].

  7. Zhou Y, Li S, Huang L, Yang Y, Zhang L, Yang M, et al. A splicing mutation in aryl hydrocarbon receptor associated with retinitis pigmentosa. Hum Mol Genet. 2018;27(14):2563–72. https://doi.org/10.1093/hmg/ddy165. 4991970 [pii].

  8. Arno G, Carss KJ, Hull S, Zihni C, Robson AG, Fiorentino A, et al. Biallelic mutation of ARHGEF18, involved in the determination of epithelial apicobasal polarity, causes adult-onset retinal degeneration. Am J Hum Genet. 2017;100(2):334–42. https://doi.org/10.1016/j.ajhg.2016.12.014. S0002-9297(16)30540-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davidson AE, Schwarz N, Zelinger L, Stern-Schneider G, Shoemark A, Spitzbarth B, et al. Mutations in ARL2BP, encoding ADP-ribosylation-factor-like 2 binding protein, cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2013;93(2):321–9. https://doi.org/10.1016/j.ajhg.2013.06.003. S0002-9297(13)00271-1 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanke-Gogokhia C, Wu Z, Gerstner CD, Frederick JM, Zhang H, Baehr W. Arf-like protein 3 (ARL3) regulates protein trafficking and ciliogenesis in mouse photoreceptors. J Biol Chem. 2016;291(13):7142–55. https://doi.org/10.1074/jbc.M115.710954. M115.710954 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Strom SP, Clark MJ, Martinez A, Garcia S, Abelazeem AA, Matynia A, et al. De novo occurrence of a variant in ARL3 and apparent autosomal dominant transmission of retinitis pigmentosa. PLoS One. 2016;11(3):e0150944. https://doi.org/10.1371/journal.pone.0150944. PONE-D-15-37721 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wright ZC, Singh RK, Alpino R, Goldberg AF, Sokolov M, Ramamurthy V. ARL3 regulates trafficking of prenylated phototransduction proteins to the rod outer segment. Hum Mol Genet. 2016;25(10):2031–44. ddw077 [pii]

    Article  CAS  Google Scholar 

  13. Aldahmesh MA, Safieh LA, Alkuraya H, Al-Rajhi A, Shamseldin H, Hashem M, et al. Molecular characterization of retinitis pigmentosa in Saudi Arabia. Mol Vis. 2009;15:2464–9. 262 [pii].

    Google Scholar 

  14. Estrada-Cuzcano A, Koenekoop RK, Senechal A, De Baere EB, de Ravel T, Banfi S, et al. BBS1 mutations in a wide spectrum of phenotypes ranging from nonsyndromic retinitis pigmentosa to Bardet-Biedl syndrome. Arch Ophthalmol. 2012;130(11):1425–32. https://doi.org/10.1001/archophthalmol.2012.2434. 1390044 [pii].

  15. Shevach E, Ali M, Mizrahi-Meissonnier L, McKibbin M, El-Asrag M, Watson CM, et al. Association between missense mutations in the BBS2 gene and nonsyndromic retinitis pigmentosa. JAMA Ophthalmol. 2015;133(3):312–8. https://doi.org/10.1001/jamaophthalmol.2014.5251. 2084908 [pii]

    Article  PubMed  Google Scholar 

  16. Davidson AE, Millar ID, Urquhart JE, Burgess-Mullan R, Shweikh Y, Parry N, et al. Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am J Hum Genet. 2009;85(5):581–92. https://doi.org/10.1016/j.ajhg.2009.09.015. S0002-9297(09)00411-X [pii].

  17. Collin RW, Safieh C, Littink KW, Shalev SA, Garzozi HJ, Rizel L, et al. Mutations in C2ORF71 cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2010;86(5):783–8. https://doi.org/10.1016/j.ajhg.2010.03.016. S0002-9297(10)00161-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Downs LM, Bell JS, Freeman J, Hartley C, Hayward LJ, Mellersh CS. Late-onset progressive retinal atrophy in the Gordon and Irish Setter breeds is associated with a frameshift mutation in C2orf71. Anim Genet. 2013;44(2):169–77. https://doi.org/10.1111/j.1365-2052.2012.02379.x.

    Article  CAS  PubMed  Google Scholar 

  19. Nishimura DY, Baye LM, Perveen R, Searby CC, Avila-Fernandez A, Pereiro I, et al. Discovery and functional analysis of a retinitis pigmentosa gene, C2ORF71. Am J Hum Genet. 2010;86(5):686–95. https://doi.org/10.1016/j.ajhg.2010.03.005. S0002-9297(10)00148-5 [pii].

  20. Sergouniotis PI, Li Z, Mackay DS, Wright GA, Borman AD, Devery SR, et al. A survey of DNA variation of C2ORF71 in probands with progressive autosomal recessive retinal degeneration and controls. Invest Ophthalmol Vis Sci. 2011;52(3):1880–6. iovs.10-6043 [pii]. https://doi.org/10.1167/iovs.10-6043.

    Article  CAS  PubMed  Google Scholar 

  21. Estrada-Cuzcano A, Neveling K, Kohl S, Banin E, Rotenstreich Y, Sharon D, et al. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement. Am J Hum Genet. 2012;90(1):102–9. https://doi.org/10.1016/j.ajhg.2011.11.015. S0002-9297(11)00493-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rebello G, Ramesar R, Vorster A, Roberts L, Ehrenreich L, Oppon E, et al. Apoptosis-inducing signal sequence mutation in carbonic anhydrase IV identified in patients with the RP17 form of retinitis pigmentosa. Proc Natl Acad Sci U S A. 2004;101(17):6617–22. https://doi.org/10.1073/pnas.0401529101. 0401529101 [pii].

  23. Tuson M, Marfany G, Gonzalez-Duarte R. Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet. 2004;74(1):128–38. https://doi.org/10.1086/38105510.1086/381055. S0002-9297(07)61951-X [pii]

    Article  CAS  PubMed  Google Scholar 

  24. Khan MI, Kersten FF, Azam M, Collin RW, Hussain A, Shah ST, et al. CLRN1 mutations cause nonsyndromic retinitis pigmentosa. Ophthalmology. 2011;118(7):1444–8. https://doi.org/10.1016/j.ophtha.2010.10.047. S0161-6420(10)01168-1 [pii].

  25. Michalakis S, Becirovic E, Biel M. Retinal cyclic nucleotide-gated channels: from pathophysiology to therapy. Int J Mol Sci. 2018;19(3) https://doi.org/10.3390/ijms19030749. E749 [pii], ijms19030749 [pii]

  26. Bareil C, Hamel CP, Delague V, Arnaud B, Demaille J, Claustres M. Segregation of a mutation in CNGB1 encoding the beta-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa. Hum Genet. 2001;108(4):328–34.

    Article  CAS  Google Scholar 

  27. Sohocki MM, Sullivan LS, Mintz-Hittner HA, Birch D, Heckenlively JR, Freund CL et al. A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. Am J Hum Genet. 1998;63(5):1307–15. https://doi.org/10.1086/302101. S0002-9297(07)61562-6 [pii]

  28. Wang Y, Guo L, Cai SP, Dai M, Yang Q, Yu W, et al. Exome sequencing identifies compound heterozygous mutations in CYP4V2 in a pedigree with retinitis pigmentosa. PLoS One. 2012;7(5):e33673. https://doi.org/10.1371/journal.pone.0033673. PONE-D-11-23089 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A, Bandah-Rozenfeld D, et al. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J Hum Genet. 2011;88(2):207–15. https://doi.org/10.1016/j.ajhg.2011.01.002. S0002-9297(11)00003-6 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuchner S, Dallman J, Wen R, Beecham G, Naj A, Farooq A, et al. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet. 2011;88(2):201–6. https://doi.org/10.1016/j.ajhg.2011.01.001. S0002-9297(11)00002-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ajmal M, Khan MI, Neveling K, Khan YM, Azam M, Waheed NK, et al. A missense mutation in the splicing factor gene DHX38 is associated with early-onset retinitis pigmentosa with macular coloboma. J Med Genet. 2014;51(7):444–8. https://doi.org/10.1136/jmedgenet-2014-102316. jmedgenet-2014-102316 [pii].

  32. Abu-Safieh L, Alrashed M, Anazi S, Alkuraya H, Khan AO, Al-Owain M, et al. Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res. 2013;23(2):236–47. https://doi.org/10.1101/gr.144105.112. gr.144105.112 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abd El-Aziz MM, Barragan I, O’Driscoll CA, Goodstadt L, Prigmore E, Borrego S et al. EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat Genet. 2008;40(11):1285–7. https://doi.org/10.1038/ng.241. ng.241 [pii].

  34. Bandah-Rozenfeld D, Mizrahi-Meissonnier L, Farhy C, Obolensky A, Chowers I, Pe’er J, et al. Homozygosity mapping reveals null mutations in FAM161A as a cause of autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2010;87(3):382–391. doi:https://doi.org/10.1016/j.ajhg.2010.07.022. S0002-9297(10)00379-4 [pii].

  35. Langmann T, Di Gioia SA, Rau I, Stohr H, Maksimovic NS, Corbo JC, et al. Nonsense mutations in FAM161A cause RP28-associated recessive retinitis pigmentosa. Am J Hum Genet. 2010;87(3):376–81. https://doi.org/10.1016/j.ajhg.2010.07.018. S0002-9297(10)00375-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wada Y, Abe T, Takeshita T, Sato H, Yanashima K, Tamai M. Mutation of human retinal fascin gene (FSCN2) causes autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2001;42(10):2395–400.

    CAS  PubMed  Google Scholar 

  37. Payne AM, Downes SM, Bessant DA, Plant C, Moore T, Bird AC, et al. Genetic analysis of the guanylate cyclase activator 1B (GUCA1B) gene in patients with autosomal dominant retinal dystrophies. J Med Genet. 1999;36(9):691–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sato M, Nakazawa M, Usui T, Tanimoto N, Abe H, Ohguro H. Mutations in the gene coding for guanylate cyclase-activating protein 2 (GUCA1B gene) in patients with autosomal dominant retinal dystrophies. Graefes Arch Clin Exp Ophthalmol. 2005;243(3):235–42. https://doi.org/10.1007/s00417-004-1015-7.

    Article  CAS  PubMed  Google Scholar 

  39. Haer-Wigman L, Newman H, Leibu R, Bax NM, Baris HN, Rizel L et al. Non-syndromic retinitis pigmentosa due to mutations in the mucopolysaccharidosis type IIIC gene, heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT). Hum Mol Genet. 2015;24(13):3742–51. https://doi.org/10.1093/hmg/ddv118. ddv118 [pii].

  40. Sullivan LS, Koboldt DC, Bowne SJ, Lang S, Blanton SH, Cadena E et al. A dominant mutation in hexokinase 1 (HK1) causes retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2014;55(11):7147–58. https://doi.org/10.1167/iovs.14-15419. iovs.14-15419 [pii].

  41. Wang F, Wang Y, Zhang B, Zhao L, Lyubasyuk V, Wang K et al. A missense mutation in HK1 leads to autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2014;55(11):7159–64. https://doi.org/10.1167/iovs.14-15520. iovs.14-15520 [pii].

  42. Hartong DT, Dange M, McGee TL, Berson EL, Dryja TP, Colman RF. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat Genet. 2008;40(10):1230–4. https://doi.org/10.1038/ng.223. ng.223 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu M, Yang L, Wang F, Li H, Wang X, Wang W et al. Mutations in human IFT140 cause non-syndromic retinal degeneration. Hum Genet. 2015;134(10):1069–78. https://doi.org/10.1007/s00439-015-1586-x. 10.1007/s00439-015-1586-x [pii].

  44. Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, et al. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet. 2015;24(1):230–42. https://doi.org/10.1093/hmg/ddu441. ddu441 [pii]

    Article  CAS  PubMed  Google Scholar 

  45. Bowne SJ, Sullivan LS, Blanton SH, Cepko CL, Blackshaw S, Birch DG, et al. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Genet. 2002;11(5):559–68.

    Article  CAS  Google Scholar 

  46. Bandah-Rozenfeld D, Collin RW, Banin E, van den Born LI, Coene KL, Siemiatkowska AM et al. Mutations in IMPG2, encoding interphotoreceptor matrix proteoglycan 2, cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2010;87(2):199–208. doi:https://doi.org/10.1016/j.ajhg.2010.07.004. S0002-9297(10)00360-5 [pii].

  47. Friedman JS, Ray JW, Waseem N, Johnson K, Brooks MJ, Hugosson T, et al. Mutations in a BTB-Kelch protein, KLHL7, cause autosomal-dominant retinitis pigmentosa. Am J Hum Genet. 2009;84(6):792–800. https://doi.org/10.1016/j.ajhg.2009.05.007. S0002-9297(09)00205-5 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Bruijn SE, Verbakel SK, de Vrieze E, Kremer H, Cremers FPM, Hoyng CB et al. Homozygous variants in KIAA1549, encoding a ciliary protein, are associated with autosomal recessive retinitis pigmentosa. J Med Genet. 2018. https://doi.org/10.1136/jmedgenet-2018-105364. jmedgenet-2018-105364 [pii].

  49. El Shamieh S, Neuille M, Terray A, Orhan E, Condroyer C, Demontant V, et al. Whole-exome sequencing identifies KIZ as a ciliary gene associated with autosomal-recessive rod-cone dystrophy. Am J Hum Genet. 2014;94(4):625–33. https://doi.org/10.1016/j.ajhg.2014.03.005. S0002-9297(14)00107-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thompson DA, Li Y, McHenry CL, Carlson TJ, Ding X, Sieving PA, et al. Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nat Genet. 2001;28(2):123–4. https://doi.org/10.1038/88828. 88828 [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Ozgul RK, Siemiatkowska AM, Yucel D, Myers CA, Collin RW, Zonneveld MN, et al. Exome sequencing and cis-regulatory mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a cause of retinitis pigmentosa. Am J Hum Genet. 2011;89(2):253–64. https://doi.org/10.1016/j.ajhg.2011.07.005. S0002-9297(11)00299-0 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stone EM, Luo X, Heon E, Lam BL, Weleber RG, Halder JA et al. Autosomal recessive retinitis pigmentosa caused by mutations in the MAK gene. Invest Ophthalmol Vis Sci. 2011;52(13):9665–73. https://doi.org/10.1167/iovs.11-8527. iovs.11-8527 [pii].

  53. Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG, et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet. 2000;26(3):270–1. https://doi.org/10.1038/81555.

    Article  CAS  PubMed  Google Scholar 

  54. Siemiatkowska AM, van den Born LI, van Hagen PM, Stoffels M, Neveling K, Henkes A et al. Mutations in the mevalonate kinase (MVK) gene cause nonsyndromic retinitis pigmentosa. Ophthalmology. 2013;120(12):2697–2705. https://doi.org/10.1016/j.ophtha.2013.07.052. S0161-6420(13)00692-1 [pii]

  55. Nishiguchi KM, Tearle RG, Liu YP, Oh EC, Miyake N, Benaglio P, et al. Whole genome sequencing in patients with retinitis pigmentosa reveals pathogenic DNA structural changes and NEK2 as a new disease gene. Proc Natl Acad Sci U S A. 2013;110(40):16139–44. https://doi.org/10.1073/pnas.1308243110. 1308243110 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang F, Li H, Xu M, Zhao L, Yang L, Zaneveld JE, et al. A homozygous missense mutation in NEUROD1 is associated with nonsyndromic autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2014;56(1):150–5. https://doi.org/10.1167/iovs.14-15382. iovs.14-15382 [pii]

    Article  CAS  PubMed  Google Scholar 

  57. Coppieters F, Leroy BP, Beysen D, Hellemans J, De Bosscher K, Haegeman G, et al. Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa. Am J Hum Genet. 2007;81(1):147–57. https://doi.org/10.1086/518426. S0002-9297(07)62824-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Escher P, Gouras P, Roduit R, Tiab L, Bolay S, Delarive T, et al. Mutations in NR2E3 can cause dominant or recessive retinal degenerations in the same family. Hum Mutat. 2009;30(3):342–51. https://doi.org/10.1002/humu.20858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bessant DA, Payne AM, Mitton KP, Wang QL, Swain PK, Plant C, et al. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nat Genet. 1999;21(4):355–6. https://doi.org/10.1038/7678.

    Article  CAS  PubMed  Google Scholar 

  60. Nishiguchi KM, Friedman JS, Sandberg MA, Swaroop A, Berson EL, Dryja TP. Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function. Proc Natl Acad Sci U S A. 2004;101(51):17819–24. https://doi.org/10.1073/pnas.0408183101. 0408183101 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Webb TR, Parfitt DA, Gardner JC, Martinez A, Bevilacqua D, Davidson AE et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum Mol Genet. 2012;21(16):3647–54. https://doi.org/10.1093/hmg/dds194. dds194 [pii].

  62. Huang SH, Pittler SJ, Huang X, Oliveira L, Berson EL, Dryja TP. Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nat Genet. 1995;11(4):468–71. https://doi.org/10.1038/ng1295-468.

    Article  CAS  PubMed  Google Scholar 

  63. McLaughlin ME, Sandberg MA, Berson EL, Dryja TP. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet. 1993;4(2):130–4. https://doi.org/10.1038/ng0693-130.

    Article  CAS  PubMed  Google Scholar 

  64. Dvir L, Srour G, Abu-Ras R, Miller B, Shalev SA, Ben-Yosef T. Autosomal-recessive early-onset retinitis pigmentosa caused by a mutation in PDE6G, the gene encoding the gamma subunit of rod cGMP phosphodiesterase. Am J Hum Genet. 2010;87(2):258–64. https://doi.org/10.1016/j.ajhg.2010.06.016. S0002-9297(10)00339-3 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu M, Yamada T, Sun Z, Eblimit A, Lopez I, Wang F et al. Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa. Hum Mol Genet. 2016;25(8):1479–88. https://doi.org/10.1093/hmg/ddw022. ddw022 [pii].

  66. Zangerl B, Goldstein O, Philp AR, Lindauer SJ, Pearce-Kelling SE, Mullins RF, et al. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. Genomics. 2006;88(5):551–63. https://doi.org/10.1016/j.ygeno.2006.07.007. S0888-7543(06)00208-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet. 2000;9(1):27–34. ddd005 [pii].

    Google Scholar 

  68. Chakarova CF, Hims MM, Bolz H, Abu-Safieh L, Patel RJ, Papaioannou MG, et al. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum Mol Genet. 2002;11(1):87–92.

    Article  CAS  Google Scholar 

  69. Chen X, Liu Y, Sheng X, Tam PO, Zhao K, Rong W et al. PRPF4 mutations cause autosomal dominant retinitis pigmentosa. Hum Mol Genet. 2014;23(11):2926–39. https://doi.org/10.1093/hmg/ddu005. ddu005 [pii].

  70. Linder B, Hirmer A, Gal A, Ruther K, Bolz HJ, Winkler C, et al. Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. PLoS One. 2014;9(11):e111754. https://doi.org/10.1371/journal.pone.0111754. PONE-D-14-30509 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tanackovic G, Ransijn A, Ayuso C, Harper S, Berson EL, Rivolta C. A missense mutation in PRPF6 causes impairment of pre-mRNA splicing and autosomal-dominant retinitis pigmentosa. Am J Hum Genet. 2011;88(5):643–9. https://doi.org/10.1016/j.ajhg.2011.04.008. S0002-9297(11)00149-2 [pii].

  72. McKie AB, McHale JC, Keen TJ, Tarttelin EE, Goliath R, van Lith-Verhoeven JJ, et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet. 2001;10(15):1555–62.

    Article  CAS  Google Scholar 

  73. Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, Chakarova C et al. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell. 2001;8(2):375–81. S1097-2765(01)00305-7 [pii].

    Google Scholar 

  74. Jordan SA, Farrar GJ, Kumar-Singh R, Kenna P, Humphries MM, Allamand V, et al. Autosomal dominant retinitis pigmentosa (adRP; RP6): cosegregation of RP6 and the peripherin-RDS locus in a late-onset family of Irish origin. Am J Hum Genet. 1992;50(3):634–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kajiwara K, Hahn LB, Mukai S, Travis GH, Berson EL, Dryja TP. Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature. 1991;354(6353):480–3. https://doi.org/10.1038/354480a0.

    Article  CAS  PubMed  Google Scholar 

  76. Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science. 1994;264(5165):1604–8.

    Article  CAS  Google Scholar 

  77. den Hollander AI, McGee TL, Ziviello C, Banfi S, Dryja TP, Gonzalez-Fernandez F, et al. A homozygous missense mutation in the IRBP gene (RBP3) associated with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2009;50(4):1864–72. https://doi.org/10.1167/iovs.08-2497. iovs.08-2497 [pii]

    Article  Google Scholar 

  78. Fingert JH, Oh K, Chung M, Scheetz TE, Andorf JL, Johnson RM et al. Association of a novel mutation in the retinol dehydrogenase 12 (RDH12) gene with autosomal dominant retinitis pigmentosa. Arch Ophthalmol. 2008;126(9):1301–7. https://doi.org/10.1001/archopht.126.9.1301. 126/9/1301 [pii].

  79. Arno G, Agrawal SA, Eblimit A, Bellingham J, Xu M, Wang F, et al. Mutations in REEP6 cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2016;99(6) 1305-15 https://doi.org/10.1016/j.ajhg.2016.10.008. S0002-9297(16)30444-X [pii]

  80. Morimura H, Saindelle-Ribeaudeau F, Berson EL, Dryja TP. Mutations in RGR, encoding a light-sensitive opsin homologue, in patients with retinitis pigmentosa. Nat Genet. 1999;23(4):393–4. https://doi.org/10.1038/70496.

    Article  CAS  PubMed  Google Scholar 

  81. Dryja TP, McGee TL, Hahn LB, Cowley GS, Olsson JE, Reichel E, et al. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N Engl J Med. 1990;323(19):1302–7. https://doi.org/10.1056/NEJM199011083231903.

    Article  CAS  PubMed  Google Scholar 

  82. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990;343(6256):364–6. https://doi.org/10.1038/343364a0.

    Article  CAS  PubMed  Google Scholar 

  83. Maw MA, Kennedy B, Knight A, Bridges R, Roth KE, Mani EJ, et al. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet. 1997;17(2):198–200. https://doi.org/10.1038/ng1097-198.

    Article  CAS  PubMed  Google Scholar 

  84. Bascom RA, Liu L, Heckenlively JR, Stone EM, McInnes RR. Mutation analysis of the ROM1 gene in retinitis pigmentosa. Hum Mol Genet. 1995;4(10):1895–902.

    Article  CAS  Google Scholar 

  85. Khaliq S, Abid A, Ismail M, Hameed A, Mohyuddin A, Lall P, et al. Novel association of RP1 gene mutations with autosomal recessive retinitis pigmentosa. J Med Genet. 2005;42(5):436–8. https://doi.org/10.1136/jmg.2004.024281. 42/5/436 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sullivan LS, Heckenlively JR, Bowne SJ, Zuo J, Hide WA, Gal A, et al. Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa. Nat Genet. 1999;22(3):255–9. https://doi.org/10.1038/10314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Davidson AE, Sergouniotis PI, Mackay DS, Wright GA, Waseem NH, Michaelides M, et al. RP1L1 variants are associated with a spectrum of inherited retinal diseases including retinitis pigmentosa and occult macular dystrophy. Hum Mutat. 2013;34(3):506–14. https://doi.org/10.1002/humu.22264.

    Article  CAS  PubMed  Google Scholar 

  88. Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, van Duijnhoven G, et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet. 1998;19(4):327–32. https://doi.org/10.1038/1214.

    Article  CAS  PubMed  Google Scholar 

  89. Keen TJ, Hims MM, McKie AB, Moore AT, Doran RM, Mackey DA, et al. Mutations in a protein target of the Pim-1 kinase associated with the RP9 form of autosomal dominant retinitis pigmentosa. Eur J Hum Genet. 2002;10(4):245–9. https://doi.org/10.1038/sj.ejhg.5200797.

    Article  CAS  PubMed  Google Scholar 

  90. Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proc Natl Acad Sci U S A. 1998;95(6):3088–93.

    Article  CAS  Google Scholar 

  91. Meindl A, Dry K, Herrmann K, Manson F, Ciccodicola A, Edgar A, et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet. 1996;13(1):35–42. https://doi.org/10.1038/ng0596-35.

    Article  CAS  PubMed  Google Scholar 

  92. Rozet JM, Perrault I, Gigarel N, Souied E, Ghazi I, Gerber S, et al. Dominant X linked retinitis pigmentosa is frequently accounted for by truncating mutations in exon ORF15 of the RPGR gene. J Med Genet. 2002;39(4):284–5.

    Article  CAS  Google Scholar 

  93. Corton M, Avila-Fernandez A, Campello L, Sanchez M, Benavides B, Lopez-Molina MI, et al. Identification of the photoreceptor transcriptional co-repressor SAMD11 as novel cause of autosomal recessive retinitis pigmentosa. Sci Rep. 2016;6:35370. https://doi.org/10.1038/srep35370. srep35370 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nakazawa M, Wada Y, Tamai M. Arrestin gene mutations in autosomal recessive retinitis pigmentosa. Arch Ophthalmol. 1998;116(4):498–501.

    Article  CAS  Google Scholar 

  95. Sullivan LS, Bowne SJ, Koboldt DC, Cadena EL, Heckenlively JR, Branham KE et al. A novel dominant mutation in SAG, the arrestin-1 gene, is a common cause of retinitis pigmentosa in Hispanic families in the Southwestern United States. Invest Ophthalmol Vis Sci. 2017;58(5):2774–84. https://doi.org/10.1167/iovs.16-21341. 2629943 [pii].

  96. Abid A, Ismail M, Mehdi SQ, Khaliq S. Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J Med Genet. 2006;43(4):378–81. https://doi.org/10.1136/jmg.2005.035055. jmg.2005.035055 [pii]

    Article  CAS  PubMed  Google Scholar 

  97. Rice DS, Huang W, Jones HA, Hansen G, Ye GL, Xu N et al. Severe retinal degeneration associated with disruption of semaphorin 4A. Invest Ophthalmol Vis Sci. 2004;45(8):2767–77. https://doi.org/10.1167/iovs.04-0020. 45/8/2767 [pii].

  98. Jin ZB, Huang XF, Lv JN, Xiang L, Li DQ, Chen J, et al. SLC7A14 linked to autosomal recessive retinitis pigmentosa. Nat Commun. 2014;5:3517. https://doi.org/10.1038/ncomms4517. ncomms4517 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao C, Bellur DL, Lu S, Zhao F, Grassi MA, Bowne SJ, et al. Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet. 2009;85(5):617–27. https://doi.org/10.1016/j.ajhg.2009.09.020. S0002-9297(09)00455-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li N, Mei H, MacDonald IM, Jiao X, Hejtmancik JF. Mutations in ASCC3L1 on 2q11.2 are associated with autosomal dominant retinitis pigmentosa in a Chinese family. Invest Ophthalmol Vis Sci. 2010;51(2):1036–43. https://doi.org/10.1167/iovs.09-3725. iovs.09-3725 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang H, den Hollander AI, Moayedi Y, Abulimiti A, Li Y, Collin RW, et al. Mutations in SPATA7 cause Leber congenital amaurosis and juvenile retinitis pigmentosa. Am J Hum Genet. 2009;84(3):380–7. https://doi.org/10.1016/j.ajhg.2009.02.005. S0002-9297(09)00067-6 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu Y, Chen X, Xu Q, Gao X, Tam PO, Zhao K, et al. SPP2 mutations cause autosomal dominant retinitis pigmentosa. Sci Rep. 2015;5:14867. https://doi.org/10.1038/srep14867. srep14867 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chakarova CF, Papaioannou MG, Khanna H, Lopez I, Waseem N, Shah A, et al. Mutations in TOPORS cause autosomal dominant retinitis pigmentosa with perivascular retinal pigment epithelium atrophy. Am J Hum Genet. 2007;81(5):1098–103. https://doi.org/10.1086/521953. S0002-9297(07)63883-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. DeLuca AP, Whitmore SS, Barnes J, Sharma TP, Westfall TA, Scott CA et al. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis. Hum Mol Genet. 2016;25(1):44–56. https://doi.org/10.1093/hmg/ddv446. ddv446 [pii].

  105. Riazuddin SA, Iqbal M, Wang Y, Masuda T, Chen Y, Bowne S, et al. A splice-site mutation in a retina-specific exon of BBS8 causes nonsyndromic retinitis pigmentosa. Am J Hum Genet. 2010;86(5):805–12. https://doi.org/10.1016/j.ajhg.2010.04.001. S0002-9297(10)00202-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Banerjee P, Kleyn PW, Knowles JA, Lewis CA, Ross BM, Parano E, et al. TULP1 mutation in two extended Dominican kindreds with autosomal recessive retinitis pigmentosa. Nat Genet. 1998;18(2):177–9. https://doi.org/10.1038/ng0298-177.

    Article  CAS  PubMed  Google Scholar 

  107. Gu S, Lennon A, Li Y, Lorenz B, Fossarello M, North M et al. Tubby-like protein-1 mutations in autosomal recessive retinitis pigmentosa. Lancet. 1998;351(9109):1103–4. https://doi.org/10.1016/S0140-6736(05)79384-3. S0140-6736(05)79384-3 [pii].

  108. Hagstrom SA, North MA, Nishina PL, Berson EL, Dryja TP. Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with retinitis pigmentosa. Nat Genet. 1998;18(2):174–6. https://doi.org/10.1038/ng0298-174.

    Article  CAS  PubMed  Google Scholar 

  109. Rivolta C, Sweklo EA, Berson EL, Dryja TP. Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss. Am J Hum Genet. 2000;66(6):1975–8. https://doi.org/10.1086/302926. S0002-9297(07)63550-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Avila-Fernandez A, Perez-Carro R, Corton M, Lopez-Molina MI, Campello L, Garanto A et al. Whole-exome sequencing reveals ZNF408 as a new gene associated with autosomal recessive retinitis pigmentosa with vitreal alterations. Hum Mol Genet. 2015;24(14):4037–48. https://doi.org/10.1093/hmg/ddv140. ddv140 [pii].

  111. Collin RW, Nikopoulos K, Dona M, Gilissen C, Hoischen A, Boonstra FN et al. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc Natl Acad Sci U S A. 2013;110(24):9856–61. https://doi.org/10.1073/pnas.1220864110. 1220864110 [pii].

  112. Li L, Nakaya N, Chavali VR, Ma Z, Jiao X, Sieving PA, et al. A mutation in ZNF513, a putative regulator of photoreceptor development, causes autosomal-recessive retinitis pigmentosa. Am J Hum Genet. 2010;87(3):400–9. https://doi.org/10.1016/j.ajhg.2010.08.003. S0002-9297(10)00415-5 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Naz S, Riazuddin SA, Li L, Shahid M, Kousar S, Sieving PA, et al. A novel locus for autosomal recessive retinitis pigmentosa in a consanguineous Pakistani family maps to chromosome 2p. Am J Ophthalmol. 2010;149(5):861–6. https://doi.org/10.1016/j.ajo.2009.12.034. S0002-9394(09)00975-1 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang Q, Chen Q, Zhao K, Wang L, Traboulsi EI. Update on the molecular genetics of retinitis pigmentosa. Ophthalmic Genet. 2001;22(3):133–54.

    Article  CAS  Google Scholar 

  115. Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40. https://doi.org/10.1186/1750-1172-1-40. 1750-1172-1-40 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wald G. The molecular basis of visual excitation. Nature. 1968;219(5156):800–7.

    Article  CAS  Google Scholar 

  117. Stryer L. Cyclic GMP cascade of vision. Annu Rev Neurosci. 1986;9:87–119. https://doi.org/10.1146/annurev.ne.09.030186.000511.

    Article  CAS  PubMed  Google Scholar 

  118. Gurevich VV, Gurevich EV, Cleghorn WM. Arrestins as multi-functional signaling adaptors. Handb Exp Pharmacol. 2008;186:15–37. https://doi.org/10.1007/978-3-540-72843-6_2.

    Article  CAS  Google Scholar 

  119. Palczewski K. Structure and functions of arrestins. Protein Sci. 1994;3(9):1355–61. https://doi.org/10.1002/pro.5560030901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Krispel CM, Chen D, Melling N, Chen YJ, Martemyanov KA, Quillinan N, et al. RGS expression rate-limits recovery of rod photoresponses. Neuron. 2006;51(4):409–16. https://doi.org/10.1016/j.neuron.2006.07.010. S0896-6273(06)00550-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  121. Pugh EN Jr. RGS expression level precisely regulates the duration of rod photoresponses. Neuron. 2006;51(4):391–3. https://doi.org/10.1016/j.neuron.2006.08.002. S0896-6273(06)00591-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  122. Haeseleer F, Sokal I, Li N, Pettenati M, Rao N, Bronson D, et al. Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily. J Biol Chem. 1999;274(10):6526–35.

    Article  CAS  Google Scholar 

  123. Koch KW, Stryer L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature. 1988;334(6177):64–6. https://doi.org/10.1038/334064a0.

    Article  CAS  PubMed  Google Scholar 

  124. Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157–86. https://doi.org/10.1016/j.preteyeres.2018.03.005. S1350-9462(17)30072-1 [pii]

    Article  PubMed  Google Scholar 

  125. Liu J, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR. The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem. 2000;275(38):29354–60. https://doi.org/10.1074/jbc.M910191199. M910191199 [pii]

    Article  CAS  PubMed  Google Scholar 

  126. Haeseleer F, Huang J, Lebioda L, Saari JC, Palczewski K. Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J Biol Chem. 1998;273(34):21790–9.

    Article  CAS  Google Scholar 

  127. Rattner A, Smallwood PM, Nathans J. Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J Biol Chem. 2000;275(15):11034–43.

    Article  CAS  Google Scholar 

  128. Gonzalez-Fernandez F. Evolution of the visual cycle: the role of retinoid-binding proteins. J Endocrinol. 2002;175(1):75–88. JOE04954 [pii]

    Article  CAS  Google Scholar 

  129. Deigner PS, Law WC, Canada FJ, Rando RR. Membranes as the energy source in the endergonic transformation of vitamin A to 11-cis-retinol. Science. 1989;244(4907):968–71.

    Article  CAS  Google Scholar 

  130. Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A. 2005;102(35):12413–12418. https://doi.org/10.1073/pnas.0503460102. 0503460102 [pii].

  131. Mata NL, Radu RA, Clemmons RC, Travis GH. Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron. 2002;36(1):69–80. S0896627302009121 [pii]

    Article  CAS  Google Scholar 

  132. Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK. New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res. 2013;32:48–63. https://doi.org/10.1016/j.preteyeres.2012.09.002. S1350-9462(12)00061-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  133. Sahu B, Maeda A. Retinol dehydrogenases regulate vitamin A metabolism for visual function. Nutrients. 2016;8(11) https://doi.org/10.3390/nu8110746. E746 [pii], nu8110746 [pii]

  134. Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J, Miu A, et al. Identification of DES1 as a vitamin A isomerase in Muller glial cells of the retina. Nat Chem Biol. 2013;9(1):30–6. https://doi.org/10.1038/nchembio.1114. nchembio.1114 [pii]

    Article  CAS  PubMed  Google Scholar 

  135. Stecher H, Gelb MH, Saari JC, Palczewski K. Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein. J Biol Chem. 1999;274(13):8577–85.

    Article  CAS  Google Scholar 

  136. Saari JC, Nawrot M, Stenkamp RE, Teller DC, Garwin GG. Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids. Mol Vis. 2009;15:844–54. 87 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Satir P, Christensen ST. Structure and function of mammalian cilia. Histochem Cell Biol. 2008;129(6):687–93. https://doi.org/10.1007/s00418-008-0416-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wolfrum U, Schmitt A. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil Cytoskeleton. 2000;46(2):95–107. https://doi.org/10.1002/1097-0169(200006)46:2<95::AID-CM2>3.0.CO;2-Q. [pii]

    Article  CAS  PubMed  Google Scholar 

  139. Estrada-Cuzcano A, Roepman R, Cremers FP, den Hollander AI, Mans DA. Non-syndromic retinal ciliopathies: translating gene discovery into therapy. Hum Mol Genet. 2012;21(R1):R111–24. https://doi.org/10.1093/hmg/dds298. dds298 [pii]

    Article  CAS  PubMed  Google Scholar 

  140. Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M, et al. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science. 2013;341(6149):1009–12. https://doi.org/10.1126/science.1240985. 341/6149/1009 [pii].

  141. Mourao A, Christensen ST, Lorentzen E. The intraflagellar transport machinery in ciliary signaling. Curr Opin Struct Biol. 2016;41:98–108. https://doi.org/10.1016/j.sbi.2016.06.009. S0959-440X(16)30066-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  142. Mockel A, Perdomo Y, Stutzmann F, Letsch J, Marion V, Dollfus H. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies. Prog Retin Eye Res. 2011;30(4):258–74. https://doi.org/10.1016/j.preteyeres.2011.03.001. S1350-9462(11)00016-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  143. Abu-Safieh L, Al-Anazi S, Al-Abdi L, Hashem M, Alkuraya H, Alamr M, et al. In search of triallelism in Bardet-Biedl syndrome. Eur J Hum Genet. 2012;20(4):420–7. https://doi.org/10.1038/ejhg.2011.205. ejhg2011205 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Goyal S, Jager M, Robinson PN, Vanita V. Confirmation of TTC8 as a disease gene for nonsyndromic autosomal recessive retinitis pigmentosa (RP51). Clin Genet. 2016;89(4):454–60. https://doi.org/10.1111/cge.12644.

    Article  CAS  PubMed  Google Scholar 

  145. Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell. 2010;141(7):1208–19. https://doi.org/10.1016/j.cell.2010.05.015. S0092-8674(10)00551-9 [pii].

  146. Mourao A, Nager AR, Nachury MV, Lorentzen E. Structural basis for membrane targeting of the BBSome by ARL6. Nat Struct Mol Biol. 2014;21(12):1035–41. https://doi.org/10.1038/nsmb.2920. nsmb.2920 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Murphy D, Singh R, Kolandaivelu S, Ramamurthy V, Stoilov P. Alternative splicing shapes the phenotype of a mutation in BBS8 to cause nonsyndromic retinitis pigmentosa. Mol Cell Biol. 2015;35(10):1860–70. https://doi.org/10.1128/MCB.00040-15. MCB.00040-15 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pretorius PR, Aldahmesh MA, Alkuraya FS, Sheffield VC, Slusarski DC. Functional analysis of BBS3 A89V that results in non-syndromic retinal degeneration. Hum Mol Genet. 2011;20(8):1625–32. https://doi.org/10.1093/hmg/ddr039. ddr039 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schwarz N, Lane A, Jovanovic K, Parfitt DA, Aguila M, Thompson CL, et al. Arl3 and RP2 regulate the trafficking of ciliary tip kinesins. Hum Mol Genet. 2017;26(17):3451. https://doi.org/10.1093/hmg/ddx245. 3952733 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Goncalves J, Pelletier L. The ciliary transition zone: finding the pieces and assembling the gate. Mol Cells. 2017;40(4):243–53. https://doi.org/10.14348/molcells.2017.0054. molcells.2017.0054 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Eblimit A, Nguyen TM, Chen Y, Esteve-Rudd J, Zhong H, Letteboer S, et al. Spata7 is a retinal ciliopathy gene critical for correct RPGRIP1 localization and protein trafficking in the retina. Hum Mol Genet. 2015;24(6):1584–601. https://doi.org/10.1093/hmg/ddu573. ddu573 [pii]

    Article  CAS  PubMed  Google Scholar 

  152. Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res. 2015;138:32–41. https://doi.org/10.1016/j.exer.2015.06.007. S0014-4835(15)00194-3 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

 Xue Chen and Chen Zhao declare that they have no conflict of interest. No human or animal studies were performed by the authors for this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X., Zhao, C. (2021). The Retinitis Pigmentosa Genes. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume III. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9184-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9184-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9183-9

  • Online ISBN: 978-981-15-9184-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics