Skip to main content

Chemical Structure and Modification of Cotton

  • Chapter
  • First Online:
Cotton Science and Processing Technology

Abstract

Textiles are among the paramount universally used fabrics in homes and industries. However, the acquisition of scalable and eco-friendly multi-functional fabrics of high durability presents as an obstacle challenging their commercialization. The surface modification of textile fabrics, such as cotton, to integrate multiple operates has been recently researched as the primary solution. Cotton is part of the topmost omnipresent and expansively used fabric owed to its inexpensiveness, obtainability, breathability, and biodegradability. It is also a hydrophilic cellulose-based fiber with negatively charged hydroxyl functional groups that can be easily modified with different polymers or small chemical agents for advanced applications. In this chapter, therefore, we shall deeply describe the cotton structure, and highlight the different reaction mechanisms and techniques applied for modification of cotton fibers and fabrics, using various modification agents for diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajendran, R., Radhai, R., Kotresh, T. M., & Csiszar, E. (2013). Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydrate Polymers, 91, 613–617. https://doi.org/10.1016/j.carbpol.2012.08.064.

    Article  CAS  Google Scholar 

  2. Agnihotri, A., Wazed Ali, S., Das, A., & Alagirusamy, R. (2019). 11—Insect-repellent textiles using green and sustainable approaches. In I. Shahid ul, B. S. Butola (Eds.), The impact and prospects of green chemistry for textile technology (pp. 307–325). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102491-1.00011-3.

  3. Tripathi, R., Narayan, A., Bramhecha, I., & Sheikh, J. (2019). Development of multi-functional linen fabric using chitosan film as a template for immobilization of in-situ generated CeO2 nanoparticles. International Journal of Biological Macromolecules, 121, 1154–1159. https://doi.org/10.1016/j.ijbiomac.2018.10.067.

    Article  CAS  Google Scholar 

  4. Windler, L., Height, M., & Nowack, B. (2013). Comparative evaluation of antimicrobials for textile applications. Environment International, 53, 62–73. https://doi.org/10.1016/j.envint.2012.12.010.

    Article  CAS  Google Scholar 

  5. Dann, A. B., & Hontela, A. (2011). Triclosan: Environmental exposure, toxicity and mechanisms of action. Journal of Applied Toxicology, 31, 285–311. https://doi.org/10.1002/jat.1660.

    Article  CAS  Google Scholar 

  6. Haque, M. (2019). Nano fabrics in the 21st century: A review. Asian Journal of Nanosciences and Materials, 2, 131–148. https://doi.org/10.26655/ajnanomat.2019.3.2.

    Article  CAS  Google Scholar 

  7. Ghayempour, S., & Montazer, M. (2016). Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. Journal of Microencapsulation, 33, 497–510. https://doi.org/10.1080/02652048.2016.1216187.

    Article  CAS  Google Scholar 

  8. Rajinder Pal, M., Abhilash, R., & Vikas, J. (2019). Essential oils: An impending substitute of synthetic antimicrobial agents to overcome antimicrobial resistance. Current Drug Targets, 20, 605–624. https://doi.org/10.2174/1389450119666181031122917.

    Article  CAS  Google Scholar 

  9. Das, M., & Kasi, P. D. (2018). Neuroprotective and antiaging essential oils and lipids in plants. 1–18. https://doi.org/10.1007/978-3-319-54528-8_89-1.

  10. El-Gizawy, K. K., Halawa, S. M., & Mehany, A. L. (2018). Effect of essential oils of clove and dill applied as an insecticidal contact and fumigant to control some stored product insects. Arab Journal of Nuclear Sciences and Applications, 0, 1–9. https://doi.org/10.21608/ajnsa.2018.12394.

    Article  Google Scholar 

  11. Gao, Y., & Cranston, R. (2008). Recent advances in antimicrobial treatments of textiles. Textile Research Journal - TEXT RES J, 78, 60–72. https://doi.org/10.1177/0040517507082332.

    Article  CAS  Google Scholar 

  12. Mahltig, B., Haufe, H., & Böttcher, H. (2005). Functionalisation of textiles by inorganic sol–gel coatings. Journal of Materials Chemistry, 15, 4385–4398. https://doi.org/10.1039/B505177K.

    Article  CAS  Google Scholar 

  13. Schindler, W. D., & Hauser, P. J. (2004) Chemical finishing of textiles, 1st edn. Elsevier.

    Google Scholar 

  14. Popescu, V., Muresan, E. I., & Grigoriu, A.-M. (2011). Monochlorotriazinyl-β-cyclodextrin grafting onto polyester fabrics and films. Carbohydrate Polymers, 86, 600–611. https://doi.org/10.1016/j.carbpol.2011.04.080.

    Article  CAS  Google Scholar 

  15. Lim, S.-H., & Hudson, S. M. (2003). Review of Chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. Journal of Macromolecular Science, Part C, 43, 223–269. https://doi.org/10.1081/MC-120020161.

    Article  CAS  Google Scholar 

  16. Oxborough, R. M., N’Guessan, R., Jones, R., Kitau, J., Ngufor, C., Malone, D., et al. (2015). The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: Towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control. Malaria Journal, 14, 124. https://doi.org/10.1186/s12936-015-0639-x.

    Article  CAS  Google Scholar 

  17. Faulde, M., & Uedelhoven, W. (2006). A new clothing impregnation method for personal protection against ticks and biting insects. International Journal of Medical Microbiology, 296, 225–229. https://doi.org/10.1016/j.ijmm.2006.01.008.

    Article  Google Scholar 

  18. Simoncic, B., & Tomsic, B. (2010). Structures of novel antimicrobial agents for textiles—A review. Textile Research Journal, 80, 1721–1737. https://doi.org/10.1177/0040517510363193.

    Article  CAS  Google Scholar 

  19. Chatha, S. A. S., Asgher, M., Asgher, R., Hussain, A. I., Iqbal, Y., Hussain, S. M., et al. (2019). Environmentally responsive and anti-bugs textile finishes—Recent trends, challenges, and future perspectives. Science of the Total Environment, 690, 667–682. https://doi.org/10.1016/j.scitotenv.2019.06.520.

    Article  CAS  Google Scholar 

  20. Molakarimi, M., Khajeh Mehrizi, M., & Haji, A. (2016). Effect of plasma treatment and grafting of β-cyclodextrin on color properties of wool fabric dyed with Shrimp shell extract. The Journal of the Textile Institute, 107, 1314–1321. https://doi.org/10.1080/00405000.2015.1102459.

    Article  CAS  Google Scholar 

  21. Haji, A., Mousavi Shoushtari, A., & Mirafshar, M. (2014). Natural dyeing and antibacterial activity of atmospheric-plasma-treated nylon 6 fabric. Coloration Technology, 130, 37–42. https://doi.org/10.1111/cote.12060.

    Article  CAS  Google Scholar 

  22. Sajed, T., Haji, A., Mehrizi, M. K., & Nasiri Boroumand, M. (2018). Modification of wool protein fiber with plasma and dendrimer: Effects on dyeing with cochineal. International Journal of Biological Macromolecules, 107, 642–653. https://doi.org/10.1016/j.ijbiomac.2017.09.038.

    Article  CAS  Google Scholar 

  23. Naz, F., Zuber, M., Mehmood Zia, K., Salman, M., Chakraborty, J., Nath, I., & Verpoort, F. (2018). Synthesis and characterization of chitosan-based waterborne polyurethane for textile finishes. Carbohydrate Polymers, 200, 54–62. https://doi.org/10.1016/j.carbpol.2018.07.076.

    Article  CAS  Google Scholar 

  24. Zahid, M., Mazzon, G., Athanassiou, A., & Bayer, I. S. (2019). Environmentally benign non-wettable textile treatments: A review of recent state-of-the-art. Advances in Colloid and Interface Science, 270, 216–250. https://doi.org/10.1016/j.cis.2019.06.001.

    Article  CAS  Google Scholar 

  25. Shahid ul, I., Shahid, M., & Mohammad, F. (2013). Perspectives for natural product based agents derived from industrial plants in textile applications—A review. Journal of Cleaner Production, 57, 2–18. https://doi.org/10.1016/j.jclepro.2013.06.004.

  26. Montazer, M., & Afjeh, M. G. (2007). Simultaneous x-linking and antimicrobial finishing of cotton fabric. Journal of Applied Polymer Science, 103, 178–185. https://doi.org/10.1002/app.25059.

    Article  CAS  Google Scholar 

  27. Eryuruk Selin, H. (2019). The effects of elastane and finishing processes on the performance properties of denim fabrics. International Journal of Clothing Science and Technology, 31, 243–258. https://doi.org/10.1108/IJCST-01-2018-0009.

    Article  Google Scholar 

  28. Ibrahim, N. A., Amr, A., Eid, B. M., Mohamed, Z. E., & Fahmy, H. M. (2012). Poly(acrylic acid)/poly(ethylene glycol) adduct for attaining multi-functional cellulosic fabrics. Carbohydrate Polymers, 89, 648–660. https://doi.org/10.1016/j.carbpol.2012.03.068.

    Article  CAS  Google Scholar 

  29. Ibrahim, N. A., Fahmy, H. M., Rehim, M. A., Sharaf, S. S., & Abo-Shosha, M. H. (2010). Finishing of cotton fabrics with hyperbranched poly (ester-amine) to enhance their antibacterial properties and UV protection. Polymer-Plastics Technology and Engineering, 49, 1297–1304. https://doi.org/10.1080/03602551003773114.

    Article  CAS  Google Scholar 

  30. Shahid, M., Shahid ul, I., & Mohammad, F. (2013). Recent advancements in natural dye applications: A review. Journal of Cleaner Production, 53, 310–331. https://doi.org/10.1016/j.jclepro.2013.03.031.

  31. Johnson, J., MacDonald, S., Meyer, L., & Stone, L. (2018). The world and United States cotton outlook. U.S. Department of Agriculture.

    Google Scholar 

  32. Manna, J., Goswami, S., Shilpa, N., Sahu, N., & Rana, R. K. (2015). Biomimetic method to assemble nanostructured Ag@ZnO on cotton fabrics: Application as self-cleaning flexible materials with visible-light photocatalysis and antibacterial activities. ACS Applied Materials & Interfaces, 7, 8076–8082. https://doi.org/10.1021/acsami.5b00633.

    Article  CAS  Google Scholar 

  33. Shim, B. S., Chen, W., Doty, C., Xu, C., & Kotov, N. A. (2008). Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Letters, 8, 4151–4157. https://doi.org/10.1021/nl801495p.

    Article  CAS  Google Scholar 

  34. Edwards, J. V., & Prevost, N. (2011). Thrombin production and human neutrophil elastase sequestration by modified cellulosic dressings and their electrokinetic analysis. Journal of Functional Biomaterials, 2, 391–413. https://doi.org/10.3390/jfb2040391.

    Article  CAS  Google Scholar 

  35. Smith, A. W. (1999). An introduction to textile materials: Their structure, properties and deterioration. Journal of the Society of Archivists, 20, 25–39. https://doi.org/10.1080/003798199103703.

    Article  Google Scholar 

  36. Katayama, S., Zhao, L., Yonezawa, S., & Iwai, Y. (2012). Modification of the surface of cotton with supercritical carbon dioxide and water to support nanoparticles. The Journal of Supercritical Fluids, 61, 199–205. https://doi.org/10.1016/j.supflu.2011.10.008.

    Article  CAS  Google Scholar 

  37. Warwicker, J. O., Jeffries, R., Colbran, R. L., & Robinson, R. N. (1966). A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton (247 pp.). Manchester: Cotton, Silk and Man-made Fibres Res. Ass.

    Google Scholar 

  38. Wakelyn, P., McAlister, D., Gamble, G., Bertoniere, N., French, A., Thibodeaux, D., et al. (2007). Cotton fiber chemistry and technology. Boca Raton: CRC Press. https://doi.org/10.1201/9781420045888.

  39. Rattanaphani, S., Chairat, M., Bremner, J. B., & Rattanaphani, V. (2007). An adsorption and thermodynamic study of lac dyeing on cotton pretreated with chitosan. Dyes and Pigments, 72, 88–96. https://doi.org/10.1016/j.dyepig.2005.08.002.

    Article  CAS  Google Scholar 

  40. Tripp, V. W., & Rollins, M. L. (1952). Morphology and chemical composition of certain components of cotton fiber cell wall. Analytical Chemistry, 24, 1721–1728. https://doi.org/10.1021/ac60071a008.

    Article  CAS  Google Scholar 

  41. Zugenmaier, P. (2001). Conformation and packing of various crystalline cellulose fibers. Progress in Polymer Science, 26, 1341–1417. https://doi.org/10.1016/S0079-6700(01)00019-3.

    Article  CAS  Google Scholar 

  42. Saka, S., & Ueno, T. (1999). Chemical conversion of various celluloses to glucose and its derivatives in supercritical water. Cellulose, 6, 177–191. https://doi.org/10.1023/A:1009232508644.

    Article  CAS  Google Scholar 

  43. Xiao, Z., Ge, Q., Xing, C., Jiang, C., Fang, S., Ji, J., & Mao, J. (2016). Self-reducing bifunctional Ni-W/SBA-15 catalyst for cellulose hydrogenolysis to low carbon polyols. Journal of Energy Chemistry, 25, 434–444. https://doi.org/10.1016/j.jechem.2016.03.015.

    Article  Google Scholar 

  44. Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358–3393. https://doi.org/10.1002/anie.200460587.

    Article  CAS  Google Scholar 

  45. Gardner, K. H., & Blackwell, J. (1974). The structure of native cellulose. Biopolymers, 13, 1975–2001. https://doi.org/10.1002/bip.1974.360131005.

    Article  CAS  Google Scholar 

  46. Adeel, S., Usman, M., Haider, W., Saeed, M., Muneer, M., & Ali, M. (2015). Dyeing of gamma irradiated cotton using Direct Yellow 12 and Direct Yellow 27: Improvement in colour strength and fastness properties. Cellulose, 22, 2095–2105. https://doi.org/10.1007/s10570-015-0596-0.

    Article  CAS  Google Scholar 

  47. Bhatti, I. A., Adeel, S., Parveen, S., & Zuber, M. (2016). Dyeing of UV irradiated cotton and polyester fabrics with multi-functional reactive and disperse dyes. Journal of Saudi Chemical Society, 20, 178–184. https://doi.org/10.1016/j.jscs.2012.12.014.

    Article  CAS  Google Scholar 

  48. Gulzar, T., Adeel, S., Hanif, I., Rehman, F., Hanif, R., Zuber, M., Akhtar, N. (2015). Eco-friendly dyeing of gamma ray induced cotton using natural quercetin extracted from Acacia Bark (A. nilotica). Journal of Natural Fibers, 12, 494–504. https://doi.org/10.1080/15440478.2014.964445.

  49. Ripoll, L., Bordes, C., Marote, P., Etheve, S., Elaissari, A., & Fessi, H. (2012). Electrokinetic properties of bare or nanoparticle-functionalized textile fabrics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 397, 24–32. https://doi.org/10.1016/j.colsurfa.2012.01.022.

    Article  CAS  Google Scholar 

  50. Bellmann, C., Caspari, A., Albrecht, V., Doan, T. T. L., Mäder, E., Luxbacher, T., & Kohl, R. (2005). Electrokinetic properties of natural fibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 267, 19–23. https://doi.org/10.1016/j.colsurfa.2005.06.033.

    Article  CAS  Google Scholar 

  51. Peng, H., Yang, C., & Wang, S. (2012). Nonformaldehyde durable press finishing of cotton fabrics using the combination of maleic acid and sodium hypophosphite. Carbohydrate Polymers, 87, 491–499. https://doi.org/10.1016/j.carbpol.2011.08.013.

    Article  CAS  Google Scholar 

  52. Harifi, T., & Montazer, M. (2012). Past, present and future prospects of cotton cross-linking: New insight into nano particles. Carbohydrate Polymers, 88, 1125–1140. https://doi.org/10.1016/j.carbpol.2012.02.017.

    Article  CAS  Google Scholar 

  53. Zhang, Y., Tian, W., Liu, L., Cheng, W., Wang, W., Liew, K. M., et al. (2019). Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chemical Engineering Journal, 372, 1077–1090. https://doi.org/10.1016/j.cej.2019.05.012.

    Article  CAS  Google Scholar 

  54. Rácz, I., Borsa, J., & Bodor, G. (1996). Crystallinity and accessibility of fibrous carboxymethylcellulose by pad‐roll technology. Journal of Applied Polymer Science $V, 62, 2015–2024.

    Google Scholar 

  55. Rácz, I., Deák, A., & Borsa, J. (2016). Fibrous carboxymethylcellulose by pad roll technology. Textile Research Journal, 65, 348–354. https://doi.org/10.1177/004051759506500607.

    Article  Google Scholar 

  56. Hashem, M., Refaie, R., & Hebeish, A. (2005). Crosslinking of partially carboxymethylated cotton fabric via cationization. Journal of Cleaner Production, 13, 947–954. https://doi.org/10.1016/j.jclepro.2004.05.002.

    Article  Google Scholar 

  57. Yang, M., Liu, W., Jiang, C., Xie, Y., Shi, H., Zhang, F., & Wang, Z. (2019). Facile construction of robust superhydrophobic cotton textiles for effective UV protection, self-cleaning and oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570, 172–181. https://doi.org/10.1016/j.colsurfa.2019.03.024.

    Article  CAS  Google Scholar 

  58. Sisti, L., Cruciani, L., Totaro, G., Vannini, M., Berti, C., Aloisio, I., & Di Gioia, D. (2012). Antibacterial coatings on poly(fluoroethylenepropylene) films via grafting of 3-hexadecyl-1-vinylimidazolium bromide. Progress in Organic Coatings, 73, 257–263. https://doi.org/10.1016/j.porgcoat.2011.11.018.

    Article  CAS  Google Scholar 

  59. Nakanishi, K., & Kanamori, K. (2005). Organic–inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. Journal of Materials Chemistry, 15, 3776–3786. https://doi.org/10.1039/B508415F.

    Article  CAS  Google Scholar 

  60. Broadbent, P. J., & Lewis, D. M. (1999). Modification of cotton cellulose with sodium benzoylthioglycollate and its effect on its dyeability with disperse dyes part 1: Synthesis and characterisation of sodium benzoylthioglycollate. Dyes and Pigments, 43, 51–58. https://doi.org/10.1016/S0143-7208(99)00036-4.

    Article  CAS  Google Scholar 

  61. Wang, L., Xi, G. H., Wan, S. J., Zhao, C. H., & Liu, X. D. (2014). Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose, 21, 2983–2994. https://doi.org/10.1007/s10570-014-0275-6.

    Article  CAS  Google Scholar 

  62. Qiu, X., Li, Z., Li, X., & Zhang, Z. (2018). Flame retardant coatings prepared using layer by layer assembly: A review. Chemical Engineering Journal, 334, 108–122. https://doi.org/10.1016/j.cej.2017.09.194.

    Article  CAS  Google Scholar 

  63. Liu, X., Chang, H., Li, Y., Huck, W. T., & Zheng, Z. (2010). Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS Applied Materials & Interfaces, 2, 529–535. https://doi.org/10.1021/am900744n.

    Article  CAS  Google Scholar 

  64. Yang, X., Zhu, L., Zhang, Y., Chen, Y., Bao, B., Xu, J., & Zhou, W. (2014). Surface properties and self-cleaning ability of the fluorinated acrylate coatings modified with dodecafluoroheptyl methacrylate through two adding ways. Applied Surface Science, 295, 44–49. https://doi.org/10.1016/j.apsusc.2013.12.177.

    Article  CAS  Google Scholar 

  65. Rabnawaz, M., Wang, Z., Wang, Y., Wyman, I., Hu, H., & Liu, G. (2015). Synthesis of poly(dimethylsiloxane)-block-poly[3-(triisopropyloxysilyl) propyl methacrylate] and its use in the facile coating of hydrophilically patterned superhydrophobic fabrics. RSC Advances, 5, 39505–39511. https://doi.org/10.1039/C5RA02067K.

    Article  CAS  Google Scholar 

  66. Abidi, N., Hequet, E., Tarimala, S., & Dai, L. L. (2007). Cotton fabric surface modification for improved UV radiation protection using sol–gel process. Journal of Applied Polymer Science, 104, 111–117. https://doi.org/10.1002/app.24572.

    Article  CAS  Google Scholar 

  67. Kiwi, J., & Pulgarin, C. (2010). Innovative self-cleaning and bactericide textiles. Catalysis Today, 151, 2–7. https://doi.org/10.1016/j.cattod.2010.01.032.

    Article  CAS  Google Scholar 

  68. Ugur, ŞS., Sariişik, M., & Aktaş, A. H. (2010). The fabrication of nanocomposite thin films with TiO2 nanoparticles by the layer-by-layer deposition method for multi-functional cotton fabrics. Nanotechnology, 21, 325603. https://doi.org/10.1088/0957-4484/21/32/325603.

    Article  Google Scholar 

  69. Afzal, S., Daoud, W. A., & Langford, S. J. (2012). Self-cleaning cotton by porphyrin-sensitized visible-light photocatalysis. Journal of Materials Chemistry, 22, 4083–4088. https://doi.org/10.1039/C2JM15146D.

    Article  CAS  Google Scholar 

  70. Anderson, S. R., Mohammadtaheri, M., Kumar, D., O’Mullane, A. P., Field, M. R., Ramanathan, R., & Bansal, V. (2016). Robust nanostructured silver and copper fabrics with localized surface plasmon resonance property for effective visible light induced reductive catalysis. Advanced Materials Interfaces, 3, 1500632. https://doi.org/10.1002/admi.201500632.

    Article  CAS  Google Scholar 

  71. Hao, L., Gao, T., Xu, W., Wang, X., Yang, S., & Liu, X. (2016). Preparation of cross-linked polysiloxane/SiO2 nanocomposite via in-situ condensation and its surface modification on cotton fabrics. Applied Surface Science, 371, 281–288. https://doi.org/10.1016/j.apsusc.2016.02.204.

    Article  CAS  Google Scholar 

  72. Tang, Z., Wang, Y., Podsiadlo, P., & Kotov, N. A. (2006). Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Advanced Materials, 18, 3203–3224. https://doi.org/10.1002/adma.200600113.

    Article  Google Scholar 

  73. Li, Y., Wang, X., & Sun, J. (2012). Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chemical Society Reviews, 41, 5998–6009. https://doi.org/10.1039/C2CS35107B.

    Article  CAS  Google Scholar 

  74. Zhang, X., Chen, H., & Zhang, H. (2007). Layer-by-layer assembly: From conventional to unconventional methods. Chemical Communications (Cambridge, England). https://doi.org/10.1039/b615590a,1395-1405,doi:10.1039/b615590a.

    Article  Google Scholar 

  75. Lyon, L.A., Meng, Z., Singh, N., Sorrell, C.D., & St. John, A. (2009). Thermoresponsive microgel-based materials. Chemical Society Reviews, 38, 865–874. https://doi.org/10.1039/B715522K.

  76. Li, S., Lewis, J. E., Stewart, N. M., Qian, L., & Boyter, H. (2008). Effect of finishing methods on washing durability of microencapsulated aroma finishing. The Journal of the Textile Institute, 99, 177–183. https://doi.org/10.1080/00405000701489701.

    Article  CAS  Google Scholar 

  77. Kala, S., Agarwal, A., Sogan, N., Naik, S. N., Nagpal, B. N., Patanjali, P. K., & Kumar, J. (2019). Chitosan-acrylate nanogel for durable anti mosquito finishing of cotton fabric and its dermal toxicity profiling on Swiss albino mice. Colloids Surfaces B Biointerfaces, 181, 789–797. https://doi.org/10.1016/j.colsurfb.2019.06.022.

    Article  CAS  Google Scholar 

  78. Aminayi, P., & Abidi, N. (2013). Imparting super hydro/oleophobic properties to cotton fabric by means of molecular and nanoparticles vapor deposition methods. Applied Surface Science, 287, 223–231. https://doi.org/10.1016/j.apsusc.2013.09.132.

    Article  CAS  Google Scholar 

  79. Aminayi, P., & Abidi, N. (2015). Ultra-oleophobic cotton fabric prepared using molecular and nanoparticle vapor deposition methods. Surface and Coatings Technology, 276, 636–644. https://doi.org/10.1016/j.surfcoat.2015.06.005.

    Article  CAS  Google Scholar 

  80. Ramachandran, T., Kumar, R., & Rajendran, R. (2004). Antimicrobial textiles—An overview. Journal of the Institution of Engineers (India), Part TX: Textile Engineering Division, 84, 42–47.

    Google Scholar 

  81. Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: A critical review. Sensors (Basel), 14, 11957–11992. https://doi.org/10.3390/s140711957.

    Article  CAS  Google Scholar 

  82. Kalia, S., Thakur, K., Celli, A., Kiechel, M. A., & Schauer, C. L. (2013). Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. Journal of Environmental Chemical Engineering, 1, 97–112. https://doi.org/10.1016/j.jece.2013.04.009.

    Article  CAS  Google Scholar 

  83. Parvinzadeh Gashti, M., Rashidian, R., Almasian, A., & Badakhshan Zohouri, A. (2013). A novel method for colouration of cotton using clay nano-adsorbent treatment. Pigment & Resin Technology, 42, 175–185. https://doi.org/10.1108/03699421311317343.

    Article  CAS  Google Scholar 

  84. Ki, H. Y., Kim, J. H., Kwon, S. C., & Jeong, S. H. (2007). A study on multi-functional wool textiles treated with nano-sized silver. Journal of Materials Science, 42, 8020–8024. https://doi.org/10.1007/s10853-007-1572-3.

    Article  CAS  Google Scholar 

  85. Heinze, T., & Pfeiffer, K. (1999). Studies on the synthesis and characterization of carboxymethylcellulose. Die Angewandte Makromolekulare Chemie, 266, 37–45. https://doi.org/10.1002/(sici)1522-9505(19990501)266:1%3c37::aid-apmc37%3e3.0.co;2-z.

    Article  CAS  Google Scholar 

  86. Adinugraha, M. P., Marseno, D. W., & Haryadi. (2005). Synthesis and characterization of sodium carboxymethylcellulose from Cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydrate Polymers, 62, 164–169. https://doi.org/10.1016/j.carbpol.2005.07.019.

  87. Darzi, H., Najafpour, G., & Nazari-Moghaddam, A. (2009). Catalyst-free conversion of alkali cellulose to fine carboxymethyl cellulose at mild conditions. World Applied Sciences Journal, 6.

    Google Scholar 

  88. Kittinaovarat, S., Hengprapakron, N., & Janvikul, W. (2012). Comparative multi-functional properties of partially carboxymethylated cotton gauze treated by the exhaustion or pad-dry-cure methods. Carbohydrate Polymers, 87, 16–23. https://doi.org/10.1016/j.carbpol.2011.08.072.

    Article  CAS  Google Scholar 

  89. Parvinzadeh Gashti, M., Katozian, B., Shaver, M., & Kiumarsi, A. (2014). Clay nanoadsorbent as an environmentally friendly substitute for mordants in the natural dyeing of carpet piles. Coloration Technology, 130, 54–61. https://doi.org/10.1111/cote.12065.

    Article  CAS  Google Scholar 

  90. Lewis, D., & McLlroy, K. (2008). The chemical modification of cellulosic fibres to enhance dyeability. Review of Progress in Coloration and Related Topics, 27, 5–17. https://doi.org/10.1111/j.1478-4408.1997.tb03770.x.

    Article  Google Scholar 

  91. Pisitsak, P., Hutakamol, J., Thongcharoen, R., Phokaew, P., Kanjanawan, K., & Saksaeng, N. (2016). Improving the dyeability of cotton with tannin-rich natural dye through pretreatment with whey protein isolate. Industrial Crops and Products, 79, 47–56. https://doi.org/10.1016/j.indcrop.2015.10.043.

    Article  CAS  Google Scholar 

  92. Ben Ticha, M., Meksi, N., Drira, N., Kechida, M., & Mhenni, M. F. A. (2013). promising route to dye cotton by indigo with an ecological exhaustion process: A dyeing process optimization based on a response surface methodology. Industrial Crops and Products, 46, 350–358. https://doi.org/10.1016/j.indcrop.2013.02.009.

    Article  CAS  Google Scholar 

  93. Haddar, W., Ben Ticha, M., Guesmi, A., Khoffi, F., & Durand, B. (2014). A novel approach for a natural dyeing process of cotton fabric with Hibiscus mutabilis (Gulzuba): Process development and optimization using statistical analysis. Journal of Cleaner Production, 68, 114–120. https://doi.org/10.1016/j.jclepro.2013.12.066.

    Article  CAS  Google Scholar 

  94. Janhom, S., Griffiths, P., Watanesk, R., & Watanesk, S. (2004). Enhancement of lac dye adsorption on cotton fibres by poly(ethyleneimine). Dyes and Pigments, 63, 231–237. https://doi.org/10.1016/j.dyepig.2004.02.007.

    Article  CAS  Google Scholar 

  95. Bhuiyan, M., Shaid, A., & Khan, M. (2014). Cationization of cotton fiber by chitosan and its dyeing with reactive dye without salt. Chemical and Materials Engineering, 2, 96–100. https://doi.org/10.13189/cme.2014.020402.

    Article  CAS  Google Scholar 

  96. Zhang, S., Ma, W., Ju, B., Dang, N., Zhang, M., Wu, S., & Yang, J. (2005). Continuous dyeing of cationised cotton with reactive dyes. Coloration Technology, 121, 183–186. https://doi.org/10.1111/j.1478-4408.2005.tb00270.x.

    Article  CAS  Google Scholar 

  97. Ben Ticha, M., Haddar, W., Meksi, N., Guesmi, A., & Mhenni, M. F. (2016). Improving dyeability of modified cotton fabrics by the natural aqueous extract from red cabbage using ultrasonic energy. Carbohydrate Polymers, 154, 287–295. https://doi.org/10.1016/j.carbpol.2016.06.056.

    Article  CAS  Google Scholar 

  98. Fras Zemljič, L., Peršin, Z., & Stenius, P. (2009). Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules, 10, 1181–1187. https://doi.org/10.1021/bm801483s.

    Article  CAS  Google Scholar 

  99. Pransilp, P., Pruettiphap, M., Bhanthumnavin, W., Paosawatyanyong, B., & Kiatkamjornwong, S. (2016). Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing. Applied Surface Science, 364, 208–220. https://doi.org/10.1016/j.apsusc.2015.12.102.

    Article  CAS  Google Scholar 

  100. Takács, E., Wojnárovits, L., Borsa, J., Papp, J., Hargittai, P., & Korecz, L. (2005). Modification of cotton-cellulose by preirradiation grafting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 236, 259–265. https://doi.org/10.1016/j.nimb.2005.03.248.

    Article  CAS  Google Scholar 

  101. Hassanpour, S. (1999). Radiation grafting of styrene and acrylonitrile to cellulose and polyethylene. Radiation Physics and Chemistry, 55, 41–45. https://doi.org/10.1016/S0969-806X(98)00310-7.

    Article  CAS  Google Scholar 

  102. Bashar, A. S., Khan, M. A., & Idriss Ali, K. M. (1995). Modification of cotton, rayon and silk fibers by radiation induced graft co-polymerization. Radiation Physics and Chemistry, 45, 753–759. https://doi.org/10.1016/0969-806X(94)00094-Z.

    Article  CAS  Google Scholar 

  103. Jiang, T., Liu, L., & Yao, J. (2011). In situ deposition of silver nanoparticles on the cotton fabrics. Fibers and Polymers, 12, 620. https://doi.org/10.1007/s12221-011-0620-4.

    Article  CAS  Google Scholar 

  104. Tang, B., Kaur, J., Sun, L., & Wang, X. (2013). Multifunctionalization of cotton through in situ green synthesis of silver nanoparticles. Cellulose, 20, 3053–3065. https://doi.org/10.1007/s10570-013-0027-z.

    Article  CAS  Google Scholar 

  105. Yue, X., Lin, H., Yan, T., Zhang, D., Lin, H., & Chen, Y. (2014). Synthesis of silver nanoparticles with sericin and functional finishing to cotton fabrics. Fibers and Polymers, 15, 716–722. https://doi.org/10.1007/s12221-014-0716-8.

    Article  CAS  Google Scholar 

  106. Zhang, F., Wu, X., Chen, Y., & Lin, H. (2009). Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers and Polymers, 10, 496–501. https://doi.org/10.1007/s12221-009-0496-8.

    Article  CAS  Google Scholar 

  107. Zhang, D., Chen, L., Zang, C., Chen, Y., & Lin, H. (2013). Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydrate Polymers, 92, 2088–2094. https://doi.org/10.1016/j.carbpol.2012.11.100.

    Article  CAS  Google Scholar 

  108. Xu, H., Shi, X., Ma, H., Lv, Y., Zhang, L., & Mao, Z. (2011). The preparation and antibacterial effects of dopa-cotton/AgNPs. Applied Surface Science, 257, 6799–6803. https://doi.org/10.1016/j.apsusc.2011.02.129.

    Article  CAS  Google Scholar 

  109. Zhang, Y., Xu, Q., Fu, F., & Liu, X. (2016). Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose, 23, 2791–2808. https://doi.org/10.1007/s10570-016-1012-0.

    Article  CAS  Google Scholar 

  110. Cheng, X., Ma, K., Li, R., Ren, X., & Huang, T. S. (2014). Antimicrobial coating of modified chitosan onto cotton fabrics. Applied Surface Science, 309, 138–143. https://doi.org/10.1016/j.apsusc.2014.04.206.

    Article  CAS  Google Scholar 

  111. Gargoubi, S., Tolouei, R., Chevallier, P., Levesque, L., Ladhari, N., Boudokhane, C., & Mantovani, D. (2016). Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study. Carbohydrate Polymers, 147, 28–36. https://doi.org/10.1016/j.carbpol.2016.03.084.

    Article  CAS  Google Scholar 

  112. Kitkulnumchai, Y., Ajavakom, A., & Sukwattanasinitt, M. (2008). Treatment of oxidized cellulose fabric with chitosan and its surface activity towards anionic reactive dyes. Cellulose, 15, 599–608. https://doi.org/10.1007/s10570-008-9214-8.

    Article  CAS  Google Scholar 

  113. Liu, X. D., Nishi, N., Tokura, S., & Sakairi, N. (2001). Chitosan coated cotton fiber: Preparation and physical properties. Carbohydrate Polymers, 44, 233–238. https://doi.org/10.1016/S0144-8617(00)00206-X.

    Article  CAS  Google Scholar 

  114. Shirvan, A. R., Nejad, N. H., & Bashari, A. (2014). Antibacterial finishing of cotton fabric via the chitosan/TPP self-assembled nano layers. Fibers and Polymers, 15, 1908–1914. https://doi.org/10.1007/s12221-014-1908-y.

    Article  CAS  Google Scholar 

  115. Xu, Q., Xie, L., Diao, H., Li, F., Zhang, Y., Fu, F., & Liu, X. (2017). Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydrate Polymers, 177, 187–193. https://doi.org/10.1016/j.carbpol.2017.08.129.

    Article  CAS  Google Scholar 

  116. Nazi, M., Malek, R. M. A., & Kotek, R. (2012). Modification of β-cyclodextrin with itaconic acid and application of the new derivative to cotton fabrics. Carbohydrate Polymers, 88, 950–958. https://doi.org/10.1016/j.carbpol.2012.01.047.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishaq Lugoloobi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lugoloobi, I., Memon, H. (2020). Chemical Structure and Modification of Cotton. In: Wang, H., Memon, H. (eds) Cotton Science and Processing Technology. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9169-3_17

Download citation

Publish with us

Policies and ethics