Skip to main content

Cytopathologic Diagnosis of Mesothelioma: Can We Diagnose Mesothelioma Based on Fluid Cytological Materials Without Biopsy?

  • Chapter
  • First Online:
Malignant Pleural Mesothelioma

Abstract

Early diagnosis and initiation of treatment lead to longer survival in malignant pleural mesothelioma (MPM). Since more than 80% of MPM cases start with pleural effusions, cytologic diagnosis with effusion smears is critical for improved clinical outcomes. A three-step approach is usually undertaken for the diagnosis of MPM. The first step is to detect atypical mesothelial cells; the second step is to verify its mesothelial origin using immunohistochemistry (IHC); the third step is differentiating MPM cells from reactive mesothelial hyperplasia (RMH) or reactive mesothelial cells (RMC). Genomic-based ancillary assays that can effectively distinguish MPM from RMH/RMC, including BRCA-1 associated protein-1 (BAP1) and methylthioadenosine phosphorylase (MTAP) IHC and 9p21 and neurofibromin 2 (NF2) fluorescence in situ hybridization (FISH), have recently been developed. These ancillary assays enable the confirmation of the neoplastic and malignant nature of atypical mesothelial cells detected in the cytologic preparations or that of a single layer of surface mesothelial cells found in the in situ phase of mesothelioma. However, cautious interpretation and familiarity with potential challenges of data interpretation while assessing BAP1 and MTAP IHC results in cell blocks are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park EK, Takahashi K, Hoshuyama T, Cheng TJ, Delgermaa V, Le GV, et al. Global magnitude of reported and unreported mesothelioma. Environ Health Perspect. 2011;119:514–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tsao AS, Wistuba I, Roth JA, Kindler HL. Malignant pleural mesothelioma. J Clin Oncol. 2009;27:2081–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flores RM, Pass HI, Seshan VE, Dycoco J, Zakowski M, Carbone M, et al. Extrapleural pneumonectomy versus pleurectomy/decortication in the surgical management of malignant pleural mesothelioma: results in 663 patients. J Thorac Cardiovasc Surg. 2008;135:620–6.

    Article  PubMed  Google Scholar 

  4. Rusch VW, Giroux D, Kennedy C, Ruffini E, Cangir AK, Rice D, et al. Initial analysis of the international association for the study of lung cancer mesothelioma database. J Thorac Oncol. 2012;7:1631–9.

    Article  PubMed  Google Scholar 

  5. Galateau-Salle F, Churg A, Roggli V, Chirieac LR, Attanoos R, Borczuk A, et al. Mesothelial tumours. In: Travis W, Brambilla E, Burke A, Marx A, Nicholson A, editors. WHO classification of tumours of the lung, pleura, Thymus and heart. 4th ed. Lyon, France: International Agency for Research on Cancer Press; 2015. p. 156–75.

    Google Scholar 

  6. Husain AN, Colby TV, Ordóñez NG, Krausz T, Borczuk A, Cagle PT, et al. Guidelines for pathologic diagnosis of malignant mesothelioma: a consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2009;133:1317–31.

    Article  PubMed  Google Scholar 

  7. Husain AN, Colby T, Ordonez N, Krausz T, Attanoos R, Beasley MB, et al. International Mesothelioma Interest Group. Guidelines for pathologic diagnosis of malignant mesothelioma: 2012 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2013;137:647–67.

    Article  PubMed  Google Scholar 

  8. Paintal A, Raparia K, Zakowski MF, Nayar R. The diagnosis of malignant mesothelioma in effusion cytology: a reappraisal and results of a multi-institution survey. Cancer Cytopathol. 2013;121:703–7.

    Article  PubMed  Google Scholar 

  9. Hjerpe A, Ascoli V, Bedrossian CWM, Boon ME, Creaney J, Davidson B, et al. Guidelines for the cytopathologic diagnosis of epithelioid and mixed-type malignant mesothelioma. Acta Cytol. 2015;59:2–16.

    Article  CAS  PubMed  Google Scholar 

  10. Monaco S, Mehrad M, Dacic S. Recent advances in the diagnosis of malignant mesothelioma: focus on approach in challenging cases and in limited tissue and cytology samples. Adv Anat Pathol. 2018;25:24–30.

    Article  PubMed  Google Scholar 

  11. Tsujimura T, Torii I, Sato A, Song M, Fukuoka K, Hasegawa S, et al. Pathological and molecular approaches to early mesothelioma. Int J Clin Oncol. 2012;17:40–7.

    Article  CAS  PubMed  Google Scholar 

  12. Matsumoto S, Hamasaki M, Kinoshita Y, Kamei T, Kawahara K, Nabeshima K. Morphological difference between pleural mesothelioma cells in effusion smears with either BAP1 loss or 9p21 homozygous deletion and reactive mesothelial cells without the gene alterations. Pathol Int. 2019;69:637–45.

    Article  CAS  PubMed  Google Scholar 

  13. Husain AN, Colby TV, Ordóñez NG, Allen TC, Attanoos RL, Beasley MB, et al. Guidelines for pathologic diagnosis of malignant mesothelioma 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2018;142:89–108.

    Article  CAS  PubMed  Google Scholar 

  14. Ordóñez NG. Value of claudin-4 immunostaining in the diagnosis of mesothelioma. Am J Clin Pathol. 2013;139:611–9.

    Article  PubMed  Google Scholar 

  15. Mawas AS, Amatya VJ, Kushitani K, Kai Y, Miyata Y, Okada M, et al. MUC4 immunohistochemistry is useful in distinguishing epithelioid mesothelioma from adenocarcinoma and squamous cell carcinoma of the lung. Sci Rep. 2018;8:134.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tsuji S, Washimi K, Kageyama T, Yamashita M, Yoshihara M, Matsuura R, et al. HEG1 is a novel mucin-like membrane protein that serves as a diagnostic and therapeutic target for malignant mesothelioma. Sci Rep. 2017;7:45768.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Churg A, Sheffield BS, Galateau-Salle F. New markers for separating benign from malignant mesothelial proliferations: are we there yet? Arch Pathol Lab Med. 2016;140:318–21.

    Article  CAS  PubMed  Google Scholar 

  18. Hida T, Hamasaki M, Matsumoto S, Sato A, Tsujimura T, Kawahara K, et al. Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer. 2017;104:98–105.

    Article  PubMed  Google Scholar 

  19. Chapel DB, Schulte JJ, Berg K, Churg A, Dacic S, Fitzpatrick C, et al. MTAP immunohistochemistry is an accurate and reproducible surrogate for CDKN2A fluorescence in situ hybridization in diagnosis of malignant pleural mesothelioma [published online ahead of print June 23, 2019]. Mod Pathol. 2019; https://doi.org/10.1038/s41379-019-0310-0.

  20. Singhi AD, Krasinskas AM, Choudry HA, Bartlett DL, Pingpank JF, Zeh HJ, et al. The prognostic significance of BAP1, NF2, and CDKN2A in malignant peritoneal mesothelioma. Mod Pathol. 2016;29:14–24.

    Article  CAS  PubMed  Google Scholar 

  21. Kinoshita Y, Hamasaki M, Yoshimura M, Matsumoto S, Iwasaki A, Nabeshima K. Hemizygous loss of NF2 detected by fluorescence in situ hybridization is useful for the diagnosis of malignant pleural mesothelioma [published online ahead of print June 23, 2019]. Mod Pathol. 2019; https://doi.org/10.1038/s41379-019-0309-6.

  22. Hesterberg TW, Barrett JC. Induction by asbestos fibers of anaphase abnormalities: mechanism for aneuploidy induction and possibly carcinogenesis. Carcinogenesis. 1985;6:473–5.

    Article  CAS  PubMed  Google Scholar 

  23. Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43:668–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng JQ, Jhanwar SC, Klein WM, Bell DW, Lee WC, Altomare DA, et al. p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma. Cancer Res. 1994;54:5547–51.

    CAS  PubMed  Google Scholar 

  25. Bianchi AB, Mitsunaga SI, Cheng JQ, Klein WM, Jhanwar SC, Seizinger B, et al. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci U S A. 1995;92:10854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sekido Y, Pass HI, Bader S, Mew DJ, Christman MF, Gazdar AF, et al. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res. 1995;55:1227–31.

    CAS  PubMed  Google Scholar 

  27. Kato S, Tomson BN, Buys TP, Elkin SK, Carter JL, Kurzrock R. Genomic landscape of malignant mesotheliomas. Mol Cancer Ther. 2016;15:2498–507.

    Article  CAS  PubMed  Google Scholar 

  28. Ladanyi M, Zauderer MG, Krug LM, Ito T, McMillan R, Bott M, et al. New strategies in pleural mesothelioma: BAP1 and NF2 as novel targets for therapeutic development and risk assessment. Clin Cancer Res. 2012;18:4485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, et al. High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol. 2015;10:565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang LM, Shi ZW, Wang JL, Ly Z, Du FB, Yang QB, et al. Diagnostic accuracy of BRCA1-associated protein 1 in malignant mesothelioma: a meta-analysis. Oncotarget. 2017;8:68863–72.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Illei PB, Ladanyi M, Rusch VW, Zakowski MF. The use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer. 2003;99:51–6.

    Article  CAS  PubMed  Google Scholar 

  32. Chiosea S, Krasinskas A, Cagle PT, Mitchell KA, Zander DS, Dacic S. Diagnostic importance of 9p21 homozygous deletion in malignant mesotheliomas. Mod Pathol. 2008;21:742–7.

    Article  CAS  PubMed  Google Scholar 

  33. Nabeshima K, Matsumoto S, Hamasaki M, Hida T, Kamei T, Hiroshima K, et al. Use of p16 FISH for differential diagnosis of mesothelioma in smear preparations. Diagn Cytopathol. 2016;44:774–80.

    Article  PubMed  Google Scholar 

  34. Illei PB, Rusch VW, Zakowski MF, Ladanyi M. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res. 2003;9:2108–13.

    CAS  PubMed  Google Scholar 

  35. Kinoshita Y, Hida T, Hamasaki M, Matsumoto S, Sato A, Tsujimura T, et al. A combination of MTAP and BAP1 immunohistochemistry in pleural effusion cytology for the diagnosis of mesothelioma. Cancer Cytopathol. 2018;126:54–63.

    Article  CAS  PubMed  Google Scholar 

  36. Kinoshita Y, Hamasaki M, Yoshimura M, Matsumoto S, Sato A, Tsujimura T, et al. A combination of MTAP and BAP1 immunohistochemistry is effective for distinguishing sarcomatoid mesothelioma from fibrous pleuritis. Lung Cancer. 2018;125:198–204.

    Article  PubMed  Google Scholar 

  37. Churg A, Hwang H, Tan L, Qing G, Taher A, Tong A, et al. Malignant mesothelioma in situ. Histopathology. 2018;72:1033–8.

    Article  PubMed  Google Scholar 

  38. Churg A, Galateau-Salle F, Roden AC, Attanoos R, von der Thusen JH, Tsao MS, et al. Malignant mesothelioma in situ: morphologic features and clinical outcome[published online ahead of print August 2, 2019]. Mod Pathol. 2019; https://doi.org/10.1038/s41379-019-0347-0.

  39. Whitaker D, Henderson DW, Shilkin KB. The concept of mesothelioma in situ: implications for diagnosis and histogenesis. Semin Diagn Pathol. 1992;9:151–61.

    CAS  PubMed  Google Scholar 

  40. Hamasaki M, Kinoshita Y, Yoshimura M, Matsumoto S, Kamei T, Hiroshima K, et al. Cytoplasmic MTAP expression loss detected by immunohistochemistry correlates with 9p21 homozygous deletion detected by FISH in pleural effusion cytology of mesothelioma. Histopathology. 2019;75:153–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Nabeshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nabeshima, K., Hamasaki, M., Kinoshita, Y., Yoshimura, M., Matsumoto, S. (2021). Cytopathologic Diagnosis of Mesothelioma: Can We Diagnose Mesothelioma Based on Fluid Cytological Materials Without Biopsy?. In: Nakano, T., Kijima, T. (eds) Malignant Pleural Mesothelioma. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-15-9158-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9158-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9157-0

  • Online ISBN: 978-981-15-9158-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics