Skip to main content

Rhizospheric Microbial Community: Ecology, Methods, and Functions

  • Chapter
  • First Online:
Rhizosphere Microbes

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 23))

Abstract

Soil is a primary natural resource that maintains ecosystem functioning, water balance, and supports plant growth. Soil is also a habitat for diverse microflora that is very crucial to soil sustaining activities. Microbial ecology is the study of microbial community dynamics and its functioning in the environmental system. Diversity in any ecological niche is the major descriptor for community structure which decides the dynamics and functioning of a community. Conventionally, microbiome characterization is based on culture-dependent techniques, but due to the insufficiency of appropriate culture media most of the microorganisms are unable to grow; therefore, for microbial community analysis culture-dependent techniques have proven less appropriate. However, over the last few decades, culture-independent techniques are being practiced to assess microbial communities and these approaches appear more satisfactory because they are more advanced and able to determine almost all genomes acclimatized in a variety of environmental samples. Moreover, microbes present in ecological niche participate in the development and maintenance of multiple functioning of ecosystems which include pedosphere development, litter decomposition, nutrient cycling, climate regulation, plant growth promotion, and sustainability maintenance. Therefore, in the present era, the characterization of microbiome is very important. This review provides a wider understanding of the functioning of microbial communities and methods of their assessment in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal PK, Agrawal S, Shrivastava R (2015) Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. Biotech 5(6):853–866

    Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJ et al (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16(7):835–843

    Article  PubMed  CAS  Google Scholar 

  • Belay-Tedla A, Zhou X, Su B et al (2009) Labile, recalcitrant, and microbial carbon and nitrogen pools of a tall grass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biol Biochem 41(1):110–116

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Bilinski TM, Vargas R, Kenney A (2019) PGPR and water availability effects on plants. Front Microbiol 10:860

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonk F, Popp D, Harms H et al (2018) PCR-based quantification of taxa-specific abundances in microbial communities: quantifying and avoiding common pitfalls. J Microbiol Methods 153:139–147

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC, Bottini R, Pontin M et al (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153(1):79–90

    Article  CAS  PubMed  Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP et al (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53(3):371–383

    Article  CAS  PubMed  Google Scholar 

  • Franco-Duarte R, ÄŒernáková L, Kadam S et al (2019) Advances in chemical and biological methods to identify microorganisms—From past to present. Microorganisms 7(5):130

    Article  CAS  PubMed Central  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57(8):2351–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George TS, Dou D, Wang X (2016) Plant–microbe interactions: manipulating signals to enhance agricultural sustainability and environmental security. Plant Growth Regul 80(1):1–3

    Article  CAS  Google Scholar 

  • Hamarashid NH, Othman MA, Hussain MAH (2010) Effects of soil texture on chemical compositions, microbial populations and carbon mineralization in soil. Egypt J Exp Biol 6(1):59–64

    Google Scholar 

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Fung Kingdom 5(4):79–95

    Article  Google Scholar 

  • Hiltpold I, Jaffuel G, Turlings TC (2014) The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes. J Exp Bot 66(2):603–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaviya N, Upadhayay VK, Singh J et al (2019) Role of microorganisms in soil genesis and functions. In: Varma A, Choudhary DK (eds) Mycorrhizosphere and pedogenesis, 1st edn. Springer, Singapore, pp 25–52

    Chapter  Google Scholar 

  • Kenney E, Eleftherianos I (2016) Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture. Int J Parasitol 46(1):13–19

    Article  PubMed  Google Scholar 

  • Khan A, Singh J, Upadhayay VK et al (2019) Microbial biofortification: a green technology through plant growth promoting microorganisms. In: Shah S, Venkatramanan V, Prasad R (eds) Sustainable green technologies for environmental management, 1st edn. Springer, Singapore, pp 255–269

    Chapter  Google Scholar 

  • Kisiel A, KÄ™pczyÅ„ska E (2016) Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. Planta 243(5):1169–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koller R, Rodriguez A, Robin C (2013) Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol 199(1):203–211

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R et al (2017) Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul 36(3):608–617

    Article  CAS  Google Scholar 

  • Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 44(2):218–225

    PubMed  PubMed Central  Google Scholar 

  • Lenoir I, Fontaine J, Sahraoui ALH (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    Article  CAS  PubMed  Google Scholar 

  • Li RX, Cai F, Pang G et al (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10(6):e0130081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H et al (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Zhang ZHE, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15(1):184–195

    Article  Google Scholar 

  • Lyu D, Backer RG, Robinson WG et al (2019) Plant-growth promoting rhizobacteria for cannabis production: yield, cannabinoid profile and disease resistance. Front Microbiol 10:1761

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmood K, Xu Z, El-Kereamy A et al (2016a) The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses. Front Plant Sci 7:1548

    PubMed  PubMed Central  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG et al (2016b) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876

    PubMed  PubMed Central  Google Scholar 

  • Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A et al (2012) Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytol 196(3):835–844

    Article  CAS  PubMed  Google Scholar 

  • Nasreen C, Mohiddin GJ, Srinivasulu M et al (2015) Interaction effects of insecticides on microbial populations and dehydrogenase activity in groundnut (Arachis hypogeae L.) planted black clay soil. Int J Curr Microbiol App Sci 4:135–146

    CAS  Google Scholar 

  • Nema V (2019) The role and future possibilities of next-generation sequencing in studying microbial diversity. In: Das S, Dash HR (eds) Microbial diversity in the genomic era. Academic Press, London, pp 611–630

    Chapter  Google Scholar 

  • Nüsslein K, Tiedje JM (1999) Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65(8):3622–3626

    Article  PubMed  PubMed Central  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR et al (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103(3):1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9(4):1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Parveen H, Singh AV, Khan A, Prasad B, Pareek N (2018) Influence of plant growth promoting rhizobacteria on seed germination and seedling vigor of green gram. Int J Chem Stud 6(4):611–618

    Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  CAS  PubMed  Google Scholar 

  • Purahong W, Wubet T, Lentendu G et al (2016) Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol Ecol 25(16):4059–4074

    Article  CAS  PubMed  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T et al (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Rawat S, Mushtaq A (2015) Plant growth promoting rhizobacteria, a formula for sustainable agriculture: a review. Asian J Plant Sci Res 5(4):43–46

    Google Scholar 

  • Rytioja J, Hildén K, Yuzon J et al (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78(4):614–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Salam MD, Varma A (2019) A review on impact of e-waste on soil microbial community and ecosystem function. Pollution 5(4):761–774

    CAS  Google Scholar 

  • Schouteden N, DeWaele D, Panis B et al (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva-Sánchez A, Soares M, Rousk J (2019) Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality. Soil Biol Biochem 134:25–35

    Article  CAS  Google Scholar 

  • Singh AV, Sharma A, Johri BN (2012) Phylogenetic profiling of culturable bacteria associated with early phase of mushroom composting assessed by amplified rDNA restriction analysis. Ann Microbiol 62(2):675–682

    Article  Google Scholar 

  • Singh AV, Prasad B, Goel R (2018) Plant growth promoting efficiency of phosphate solubilizing Chryseobacterium sp. PSR 10 with different doses of N and P fertilizers on Lentil (Lens culinaris var. PL-5) growth and yield. Int J Curr Microbiol App Sci 7(5):2280–2289

    Article  CAS  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci 110(50):20117–20122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tlaskal V, Voriskova J, Baldrian P (2016) Bacterial succession on decomposing leaflitter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiol Ecol 92:177

    Article  CAS  Google Scholar 

  • Tran H, Ficke A, Asiimwe T et al (2007) Role of the cyclic lipopeptidemassetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175(4):731–742

    Article  CAS  PubMed  Google Scholar 

  • Vivas A, Voros I, Biro B et al (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126(2):179–189

    Article  CAS  PubMed  Google Scholar 

  • Vlcek V, Pohanka M (2020) Glomalin—an interesting protein part of the soil organic matter. Soil Water Res 15(2):67–74

    Article  CAS  Google Scholar 

  • Voges MJ, Bai Y, Schulze-Lefert P et al (2019) Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci 116(25):12558–12565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Walder F, Boller T, Wiemken A et al (2016) Regulation of plants' phosphate uptake in common mycorrhizal networks: role of intraradical fungal phosphate transporters. Plant Signal Behav 11(2):e1131372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weyens N, Thijs S, Popek R et al (2015) The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16(10):25576–25604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiaoping TIAN, Lei WANG, Yahong HOU (2019) Responses of soil microbial community structure and activity to incorporation of straws and straw biochars and their effects on soil respiration and soil organic carbon turnover. Pedosphere 29(4):492–503

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2008) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Yi HS, Ahn YR, Song GC et al (2016) Impact of a bacterial volatile 2, 3-butanediol on Bacillus subtilis rhizosphere robustness. Front Microbiol 7:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Ge H, Zhang F et al (2016) Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiol Biochem 100:64–74

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Joshi, M., Singh, A.V. (2020). Rhizospheric Microbial Community: Ecology, Methods, and Functions. In: Sharma, S.K., Singh, U.B., Sahu, P.K., Singh, H.V., Sharma, P.K. (eds) Rhizosphere Microbes. Microorganisms for Sustainability, vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-15-9154-9_5

Download citation

Publish with us

Policies and ethics