Skip to main content

Stress Relaxation Study of Ultrafine-Grained AA 6061 Alloy Processed Through Combined Constrained Groove Pressing and Cold Rolling

  • Conference paper
  • First Online:
Advances in Manufacturing Processes

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 561 Accesses

Abstract

In this work, grain refinement and deformation mechanisms of ultrafine-grained AA 6061 alloy have been investigated using uniaxial tensile tests with stress relaxation. Initially, solutionized AA 6061 alloy samples with 3 mm thickness are subjected to constrained grove pressing (CGP) with an effective plastic strain of 1.16. The CGP samples are eventually rolled at room temperature (cold rolled) to produce ultrafine-grained thin sheets of 1 mm thickness. Due to the intense plastic strain applied during CGP and cold rolling (CR), it is practically challenging to quantify the grain size refinement by optical methods. Therefore, stress relaxation, which is an alternate transient mechanical test, is used to estimate the average degree of grain refinement for a larger length scale. In this method, the transient data from uniaxial tensile tests with stress relaxation is used to calculate the activation volume, which helps to understand the deformation mechanisms of UFG structured materials. In the present work, uniaxial tensile tests with controlled single and repeated stress relaxation are performed to determine apparent and actual activation volume in different materials conditions (solutionized, CGPed, and CGP + CR). Stress–strain curves obtained from the stress relaxation tests are compared with the monotonic tensile stress–strain curves. The results showed that the activation volume determined from single and repeated relaxation tests substantially decreased after the CGP and CGP + CR processes. The results also indicated that the grain boundary sliding is the possible deformation mechanism in CGP + CR samples and dislocation-dislocation interactions in CGP and SL samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lapovok R, Timokhina I, McKenzie PWJ, O’Donnell R (2008) Processing and properties of ultrafine-grain aluminium alloy 6111 sheet. J Mater Proccess Tech 200(1–3):441–450

    Article  Google Scholar 

  2. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280:37–49

    Article  Google Scholar 

  3. Starke EA, Staleyt JT (1996) Application of modern aluminium alloys to aircraft. Progr Aerosp Sci 32(2–3):131–172

    Article  Google Scholar 

  4. Changela K, Naik HB, Desai KP, Raval HK (2020) Effecct of rolling temperatures on mechanical and facture behavior of AA 3003 alloy and pure Cu. SN Appl Sci 2:1109. https://doi.org/10.1007/s42452-020-2903-0

    Article  Google Scholar 

  5. Changela K, Krishnaswamy H, Digavalli RK (2020) Mechanical behavior and deformation kinetics of aluminium alloys processed through cryorolling and subsequent annealing. Metallur Mater Trans A 51:648–666

    Article  Google Scholar 

  6. Valiev RZ, Korznikov AV, Mulyukov RR (1993) Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng A 168(2):141–148

    Article  Google Scholar 

  7. Parmar V, Changela K, Srinivas B, Mani Kumar M, Mohanty S, Panigrahi SK, Hariharan K, Kalyanasundaram D (2019) Relationship between dislocation density and actibacterial activity of cryorolled and cold rolled copper. Materials. 12:200. https://doi.org/10.3390/ma12020200

    Article  Google Scholar 

  8. Changela K, Krishnaswamy H, Digavalli RK (2019) Development of combined groove pressing and rolling to produce ultra-fine grained Al alloys and comparison with cryorolling. Mater Sci Eng 760:7–18

    Article  Google Scholar 

  9. Changela K, Kumar S, Hariharan K, Ravi Kumar D (2019) Aging behavior of ultra-fine grained AA 6061 alloy subjected to constrained groove pressing followed by cold rolling. IOP Confe Ser Mater Sci Eng 651:012069. https://doi.org/10.1088/1757-899X/651/1/012069

    Article  Google Scholar 

  10. Kumar S, Venkatachalam S, Hariharan K, Digavalli RK, Murthy HSN (2019) Influence of inhomogeneous deformation on tensile behavior of sheets processed through constrained groove pressing. J Eng Mater Tech 141(4):1–10

    Article  Google Scholar 

  11. Varma A, Krishnaswamy H, Jain J, Lee MG, Barlat F (2019) Advanced constitutive model for repeated stress relaxation accounting for transient mobile dislocation density and internal stress. Mech Mater 133:138–153

    Article  Google Scholar 

  12. Sargent GA (1965) Stress relaxation and thermal activation in niobium. Acta Meterialia. 13(6):663–671

    Article  Google Scholar 

  13. Mishra S, Yadava M, Kulkarni KN, Gurao NP (2018) Stress relaxation behavior of an aluminium magnesium silicon alloy in different temper condition. Mech Mater 125:80–93

    Article  Google Scholar 

  14. Conrad H, Narayan J (2002) Mechanisms for grain size hardening and softening in Zn. Acta Mater 50(20):5067–5078

    Article  Google Scholar 

  15. Cheng S, Spencer JA, Milligan WW (2003) Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater 51(15):4505–4518

    Article  Google Scholar 

  16. Lee S, Lee SJ, De Cooman BC (2011) Work hardening behavior of ultrafine-grained Mn transformation-induced plasticity steel. Acta Mater 59(20):7546–7553

    Article  Google Scholar 

  17. Mohebbi MS, Akbarzadeh A, Yoon YO, Kim SK (2015) Stress relaxation and flow behavior of ultrafine grained AA 1050. Mech Mater 89:23–34

    Article  Google Scholar 

  18. Kumar S, Hariharan K, Ravi Kumar D, Paul S (2019) Accounting Bauschinger effect in the numerical simulation of constrained groove pressing process. J Manuf Process 38:49–62

    Article  Google Scholar 

  19. Hariharan K, Dubey P, Jain J (2016) Time dependent ductility improvement of stainless steel SS 316 using stress relaxation. Mater Sci Eng A 673:250–256

    Article  Google Scholar 

  20. Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater 52(14):4259–4271

    Article  Google Scholar 

  21. Kapoor R, Chakravartty JK (2007) Deformation behavior of an ultrafine-grained Al–Mg alloy produced by equal-channel angular pressing. Acta Mater 55(16):5408–5418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Changela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Changela, K., Hariharan, K., Digavalli, R.K. (2021). Stress Relaxation Study of Ultrafine-Grained AA 6061 Alloy Processed Through Combined Constrained Groove Pressing and Cold Rolling. In: Dave, H.K., Nedelcu, D. (eds) Advances in Manufacturing Processes . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9117-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9117-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9116-7

  • Online ISBN: 978-981-15-9117-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics