Skip to main content

On the Fragment Production and Phase Transition Using QMD + SACA Model

  • Conference paper
  • First Online:
Advances in Nuclear Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 257))

  • 487 Accesses

Abstract

In the present study, we have shown the role of different clusterization algorithms on the signals of liquid–gas phase transition in the multifragmentation for the central reactions of \(^{40}\)Ar + \(^{45}\)Sc. We have used the quantum molecular dynamics (QMD) model to generate the phase space of the nucleons and clusterization algorithms based on spatial constraints and its variants, and the energy-based clusterization algorithm. We also present the correlations among fragments within the events via constructing correlation function. We find that the energy-based clusterization algorithm, i.e., simulated annealing clusterization algorithm (SACA) is the most successful among all the available clusterization algorithms. We also find that the event-by-event analysis unfolds and helps to understand reaction picture much better than the quantities constructed by averaging over events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.B. Tsang et al., Onset of nuclear vaporization in \(^{197}\)Au+ \(^{197}\)Au collision. Phys. Rev. Lett. 71, 1502 (1993)

    Article  ADS  Google Scholar 

  2. A. SchĂ¼ttauf et al., Universaility of spectator fragmentation at relativistic bombarding energies. Nucl. Phys. A 607, 457 (2000)

    Article  ADS  Google Scholar 

  3. B. Borderie et al., Nuclear multifragmentation and phase transition for hot nuclei. Prog. Part. Nucl. Phys. 51, 551 (2008)

    Article  ADS  Google Scholar 

  4. J.E. Finn et al., Nuclear fragment mass yields from high-energy proton-nucleus interactions. Phys. Rev. Lett. 49, 1321 (1982)

    Article  ADS  Google Scholar 

  5. T. Li et al., Mass dependence of critical behavior in nucleus-nucleus collisions. Phys. Rev. C 49, 1630–1634 (1994)

    Article  ADS  Google Scholar 

  6. S. Sood, R. Kumar, A. Sharma, R.K. Puri, Cluster formation and phase transition in nuclear dissembly using a variety of clusterization algorithms. Phys. Rev. C 99, 054612 (2019)

    Article  ADS  Google Scholar 

  7. R. Kumar, S. Sood, A. Sharma, R.K. Puri, On the multifragmentation and phase transition in the perspectives of different n-body dynamical models. Act. Phys. Pol. B 49, 301 (2018)

    Article  Google Scholar 

  8. A. Sharma, A. Bharti, Isospin effects via Coulomb forces on the onset of multifragmentation in light and heavily charged systems. Eur. Phys. J. A 52, 42 (2016)

    Article  ADS  Google Scholar 

  9. M.L. Gilkes et al., Phys. Rev. Lett. 73, 1590 (1994)

    Article  ADS  Google Scholar 

  10. J. Pochodzalla et al., Probing the nu clear liquid-gas phase transition. Phys. Rev. Lett. 75, 1040 (1995)

    Article  ADS  Google Scholar 

  11. X. Campi, Signals of a phase transition in nuclear multifragmentation, Phys. Lett. B 208, 351 (1988); ibid., J. Phys. A: Math. Gen. 19, L917 (1986)

    Google Scholar 

  12. Y.G. Ma et al., Critical behavior in light nuclear systems: experimental aspects. Phys. Rev. C 71, 054606 (2005)

    Article  ADS  Google Scholar 

  13. Y.G. Ma, et al., Evidence of critical behavior in the disassembly of nuclei with A=36, Phys. Rev. C 69, 031604 (R) (2004)

    Google Scholar 

  14. Y.G. Ma et al., Onset of multifragmentation in intermediate energy light asymmetyric collisions. Phys. Rev. C 51, 710 (1995)

    Article  ADS  Google Scholar 

  15. M. Belkacem et al., Searching for the nuclear liquid-gas phase transition in Au+Au collisions at 35 MeV/nucleon. Phys. Rev. C 54, 2435 (1996)

    Article  ADS  Google Scholar 

  16. W. Lin et al., Sensitivity study of experimental measures for the nuclear liquid-gas phase transition in the statistical multifragmentation model. Phys. Rev. C 97, 054615 (2018)

    Article  ADS  Google Scholar 

  17. H.L. Liu, Y.G. Ma, D.Q. Fang, Finite-size scaling phenomenon of nuclear liquid-gas phase transition probes. Phys. Rev. C 99, 054614 (2019)

    Article  ADS  Google Scholar 

  18. B. Borderie et al., Evidence for Spinodal Decomposition in Nuclear Multifragmentation. Phys. Rev. Lett. 86, 3252 (2001)

    Article  ADS  Google Scholar 

  19. B. Borderie et al., Phase transition dynamics for hot nuclei. Phys. Lett. B 782, 291 (2018)

    Article  ADS  Google Scholar 

  20. R.K. Puri, J. Aichelin, Simulating annealing clusterization algorithm for studying the multifragmentation. J. Comput. Phys. 162, 245 (2000); J. Phys. G: Nucl. Part. Phys. 37, 015105; R.K. Puri et al., Early fragment formation in heavy-ion collisions. Phys. Rev C 54, R28

    Google Scholar 

  21. J. Aichelin et al., Quantum molecular dynamic: A dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy-ion collisions. Phys. Rep. 202, 233 (1991)

    Article  ADS  Google Scholar 

  22. S. Kumar, R.K. Puri, Role of momentum correlations in fragment formation. Phys. Rev. C 58, 320 (1998)

    Article  ADS  Google Scholar 

  23. S. Kumar, R.K. Puri, Stability of fragments formed in the simulations of central heavy ion collisions. Phys. Rev. C 58, 2858 (1998)

    Article  ADS  Google Scholar 

  24. S. Goyal, R.K. Puri, Formation of fragments in heavy-ion collisions using a modified clusterization method. Phys. Rev. C 83, 047601 (2011)

    Article  ADS  Google Scholar 

  25. R. Kumar, S. Gautam, Influence of different liquid-drop based bindings on lighter mass fragments and entropy production. Eur. Phys. J. A 52, 112 (2016)

    Google Scholar 

  26. R. Kumar, S. Gautam, R.K. Puri, Multifragmentation within a clusterization algorithm based on thermal binding energies. Phys. Rev. C 89, 064608 (2014)

    Article  ADS  Google Scholar 

  27. R. Kumar, S. Gautam, R.K. Puri, Influence of different binding energies in clusterization approach: fragmentation as an example. J. Phys. G: Nucl. Part. Phys. 43, 025104 (2016)

    Google Scholar 

  28. Y.K. Vermani et al., Microscopic approach to the spectator matter fragmentation from 400 to 1000 MeV/nucleon. Eur. Phys. Lett. 85, 62001 (2009)

    Article  ADS  Google Scholar 

  29. R. Kumar, R.K. Puri, Using experimental data to test an n-body dynamical model coupled with an energy-based clusterization algorithm at low incident energies. Phys. Rev. C 97, 034624 (2018)

    Article  ADS  Google Scholar 

  30. S. Sood, R.K. Kumar, A. Sharma, R.K. Puri, On the critical behaviorin in light and heavily charges systems. J. Phys. G: Nucl. Part. Phys. (submitted) (2020)

    Google Scholar 

  31. T. Furuta, A. Ono, Relevance of equilibrium in multifragmentation. Phys. Rev. C 79, 14608 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by Council of Scientific and Industrial Research (CSIR), Govt. of India, vide Grant No. 03(1388)/16/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sood, S., Kumar, R., Sharma, A., Puri, R.K. (2021). On the Fragment Production and Phase Transition Using QMD + SACA Model. In: Puri, R.K., Aichelin, J., Gautam, S., Kumar, R. (eds) Advances in Nuclear Physics. Springer Proceedings in Physics, vol 257. Springer, Singapore. https://doi.org/10.1007/978-981-15-9062-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9062-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9061-0

  • Online ISBN: 978-981-15-9062-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics