Skip to main content

Elliptic Flow in Relativistic Heavy-Ion Collisions

  • Conference paper
  • First Online:
Advances in Nuclear Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 257))

  • 576 Accesses

Abstract

The basic aim of the heavy-ion physics is to investigate matter at extreme densities and temperatures where quarks and gluons are no longer confined inside hadrons. Such a state of matter, that may have existed a few microseconds after the Big Bang, is created in the laboratory by colliding nuclei at the Relativistic Heavy-Ion Collider (RHIC), Brookhaven, and at the Large Hadron Collider (LHC), CERN at top center of mass energies \(\sqrt{{ {s}}_\mathrm{NN}} = 200\) GeV and 5.02 TeV, respectively. The large elliptic flow and number of constituent quark (NCQ) scaling observed at the RHIC and similar observations at the LHC with some deviation indicate the formation of de-confined state in relativistic heavy-ion collisions. The elliptic flow measurement and its dependence on collision centrality, transverse momentum, particle species, etc., will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.V. Shuryak, Quantum chromodynamics and the theory of superdense matter. Phys. Rep. 61, 71–158 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Borsanyi et al., The QCD equation of state with dynamical quarks. JHEP 11, 077 (2010)

    Google Scholar 

  3. L. Kumar, D. Keane, Experimental studies of the quantum chromodynamics phase diagram at the STAR experiment. Pramana 84, 773–786 (2015)

    Article  ADS  Google Scholar 

  4. U. Heinz, M. Jacob, Evidence for a new state of matter: an assessment of the results from the CERN lead beam program nucl-th/0002042, pp. 1–7

    Google Scholar 

  5. J.Y. Ollitrault, Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46, 229–245 (1992)

    Article  ADS  Google Scholar 

  6. U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 63, 123 (2013)

    Article  ADS  Google Scholar 

  7. C. Gale, S. Jeon, B. Schenke, Hydrodynamic modelling of heavy-ion collisions. Int. J. Mod. Phys. A 28, 1340011 (2013)

    Article  ADS  Google Scholar 

  8. P. Huovinen, Hydrodynamics at RHIC and LHC: what have we learned? Int. J. Mod. Phys. E 22, 1330029 (2013)

    Article  ADS  Google Scholar 

  9. R.S. Bhalerao, (AEPSHEP 2012), Relativistic heavy-ion collisions, in Proceedings on 1st Asia-Europe-Pacific School of High-Energy Physics TIFR-TH-14-11, arXiv:1404.3294 [nucl-th]

  10. R. Snellings, Elliptic flow: a brief review. New. J. Phys. 13, 055008 (2011)

    Google Scholar 

  11. J.Y. Ollitrault, Relativistic hydrodynamics for heavy-ion collisions. Eur. J. Phys. 29, 275–302 (2008)

    Article  Google Scholar 

  12. J. Admas et al., STAR Collaboration, Experimental and theoretical challenges in the search for the quark-gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005)

    Google Scholar 

  13. J. Admas et al., STAR Collaboration, Azimuthal anisotropy in Au+Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV. Phys. Rev. C 72, 0149040 (2005)

    Google Scholar 

  14. S.S. Adler et al., PHENIX Collaboration, Elliptic flow of identified hadrons in Au + Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV. Phys. Rev. Lett. 91, 182301 (2003)

    Google Scholar 

  15. H. Satz, Extreme States of Matter in Strong Interaction Physics. Lecture Notes in Physics, 1st edn., vol. 841 (Springer, Heidelberg, 2012)

    Google Scholar 

  16. W. Florkowski, Phenomenology of Ultra-relativistic Heavy-Ion Collisions (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  17. J. Bartke, Relativistic Heavy-Ion Physics (World Scientific, Singapore, 2008)

    Book  Google Scholar 

  18. J. Letessier, J. Rafelski, Hadrons and Quark-Gluon Plasma (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  19. C.Y. Wong, Introduction to High-Energy Heavy-Ion Collisions (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  20. B. Muller, The Physics of the Quark-Gluon Plasma. Lecture Notes in Physics, 1st edn., vol. 225 (Springer, Heidelberg, 1985)

    Google Scholar 

  21. S.A. Voloshin, Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions. Phys. Rev. C 70, 665–672 (1996)

    Google Scholar 

  22. A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671–78 (1998)

    Article  ADS  Google Scholar 

  23. J. Barrette et al., E877 Collaboration, Energy and charged particle flow in 10.8 A GeV/c Au+Au collisions. Phys. Rev. C 55, 1420–1430 (1997)

    Google Scholar 

  24. A. Bilandzic, R. Snellings, Flow analysis with cumulants: direct calculations. Phys. Rev. C 83, 044913 (2011)

    Article  ADS  Google Scholar 

  25. G. Aad et al., Measurement of the distribution of event-by-event flow harmonics in lead-lead collisions at \(\sqrt{s_{NN}}\) = 2.76 TeV with the ATLAS detector at the LHC. JHEP 11, 183–205 (2013)

    Google Scholar 

  26. I. Selyuzhenkov, S. Voloshin, Effects of nonuniform acceptance in anisotropic flow measurements. Phys. Rev. C 77, 034904 (2008)

    Article  ADS  Google Scholar 

  27. N. Borghini, P.M. Dinh, J.Y. Ollitrault, Flow analysis from multiparticle Azimuthal correlations. Phys. Rev. C 64, 054901 (2001)

    Article  ADS  Google Scholar 

  28. K. Aamodt et al., ALICE Collaboration, Elliptic flow of charged particles in Pb-Pb collisions at \(\sqrt{s_{NN}}\)=2.76 TeV. Phys. Rev. Lett. 105, 252302 (2010)

    Google Scholar 

  29. K. Burka et al., ATLAS Collaboration, Measurement of Azimuthal flow of soft and high-p\_T charged particles in 5.02 TeV Pb+Pb collisions with the ATLAS detector. Nucl. Part. Phys. Proc. 289, 441 (2017)

    Google Scholar 

  30. B. Abelev et al., ALICE Collaboration, Charge separation relative to the reaction plane in Pb-Pb. Phys. Rev. Lett. 110, 012301 (2013)

    Google Scholar 

  31. P. Huovinen et al., Radial and elliptic flow at RHIC: further predictions. Phys. Lett. B 503, 58–64 (2001)

    Google Scholar 

  32. H. Song, S.A. Bass, U. Heinz, Elliptic flow in \(\sqrt{s_{NN}}\)=200 GeV Au+Au collisions and \(\sqrt{s}\)=2.76 TeV Pb+Pb collisions: insights from viscous hydrodynamics+hadron cascade hybrid model. Phys. Rev. C 83, 054912 (2011)

    Google Scholar 

  33. B.I. Abelev et al., STAR Collaboration, Centrality dependence of charged hadron and strange hadron elliptic flow from \(\sqrt{s_{NN}}\)=200 GeVAu+Au collisions. Phys. Rev. C 77, 054901 (2008)

    Google Scholar 

  34. B.B. Abelev et al., ALICE Collaboration, (Anti-)deuteron production and anisotropic flow measured with ALICE at the LHC. JHEP 06, 190 (2015)

    Google Scholar 

  35. P. Bozek, Component of elliptic flow in Pb-Pb collisions at 2.76 Tev. Phys. Lett. B 699, 283 (2011). arXiv:1101.1791 [nucl-th]

  36. T. Hirano, P. Huovinen, Y. Nara, Elliptic flow in Pb+Pb collisions at \(\sqrt{s_{NN}}\) = 2.76 TeV: hybrid model assessment of the first data. Phys. Rev. C 84, 011901 (2011). arXiv:1012.3955 [nucl-th]

  37. L. Adamczyk et al., STAR Collaboration, Azimuthal anisotropy in Cu+Au collisions at \(\sqrt{s_{NN}}\)=200 GeV. Phys. Rev. C 98, 014915 (2018)

    Google Scholar 

  38. ATLAS Collaboration, Measurement of the distributions of event-by-event flow harmonics in Pb-Pb collisions at \(\sqrt{s_{NN}}\)=2.76 TeV. ATLAS-CONF-2012-114, https://cdsweb.cern.ch/record/1472935

  39. C. Gale et al., Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics. Phys. Rev. Lett. 110, 012302 (2013)

    Article  ADS  Google Scholar 

  40. B. Schenke, P. Tribedy, R. Venugopalan, Fluctuating glasma initial conditions and flow in heavy ion collisions. Phys. Rev. Lett. 108, 252301 (2012)

    Article  ADS  Google Scholar 

  41. B. Schenke, P. Tribedy, R. Venugopalan, Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions. Phys. Rev. C 86, 034908 (2012)

    Article  ADS  Google Scholar 

  42. J. Bartels, K.J. Golec-Biernat, H. Kowalski, Modification of the saturation model: DGLAP evolution. Phys. Rev. D 66, 014001 (2002)

    Google Scholar 

  43. H. Kowalski, D. Teaney, Impact parameter dipole saturation model. Phys. Rev. D 68, 114005 (2003)

    Article  ADS  Google Scholar 

  44. A. Kovner, L.D. McLerran, H. Weigert, Gluon production from non-Abelian Weizsacker-Williams fields in nucleus-nucleus collisions. Phys. Rev. D 52, 6231–6237 (1995)

    Google Scholar 

  45. A. Krasnitz, R. Venugopalan, Initial energy density of gluons produced in very-high-energy nuclear collisions. Phys. Rev. Lett. 84, 4309–4312 (2000)

    Google Scholar 

  46. T. Lappi, Production of gluons in the classical field model for heavy ion collisions. Phys. Rev. C 67, 054903 (2003)

    Article  ADS  Google Scholar 

  47. W. Israel, J.M. Stewart, Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 118, 341–372 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  49. A.M. Sirunyan et al., CMS Collaboration, Non-Gaussian elliptic-flow fluctuation in Pb-Pb collisions at \(\sqrt{s_{NN}}\)=5.02 TeV. Phys. Lett. B 789, 643–665 (2019)

    Google Scholar 

  50. G. Giacalone, L. Yan, J.N. Hostler, J.Y. Ollitrault, Skewness of elliptic flow fluctuations. Phys. Rev. C 95, 014913 (2017)

    Article  ADS  Google Scholar 

  51. G. Agakishiev et al., STAR Collaboration, Energy and system-size dependence of two- and four-particle \(v_2\) measurements in heavy-ion collisions at \(\sqrt{s_{NN}}\) = 62.4 and 200 GeV and their implications on flow fluctuations and nonflow. Phys. Rev. C 86, 014904 (2012)

    Google Scholar 

  52. N. Kumar, Ph.D. thesis, Panjab University, Chandigarh, India (2011)

    Google Scholar 

  53. B. Alver et al., Importance of correlations and fluctuation on the initial source eccentricity in high-energy nucleus collisions. Phys. Rev. C 77, 014906 (2008)

    Google Scholar 

  54. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–248 (2007)

    Article  ADS  Google Scholar 

  55. H.J. Drescher, A. Dumitru, A. Hayashigaki, Y. Nara, The Eccentricity in heavy-ion collisions from color glass condensate initial conditions. Phys. Rev. C 74 044905 (2006); H.J. Drescher, Y. Nara, Eccentricity in heavy-ion collisions from color glass condensate initial conditions. Phys. Rev. C 76, 041903 (2007)

    Google Scholar 

  56. R.S. Bhalerao, J.Y. Ollitrault, Ecentricity fluctuations and elliptic flow at RHIC. Phys. Lett. B 641, 260–269 (2006)

    Google Scholar 

  57. S.A. Voloshin, A.M. Poskanzer, A. Tang, G. Wang, Elliptic flow in the Gaussian model of eccentricity fluctuations. Phys. Lett. B 659, 537–541 (2008)

    Article  ADS  Google Scholar 

  58. B. Alver et al., Non-flow correlations and elliptic flow fluctuations in Au + Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV PHOBOS Collaboration. Phys. Rev. C 81, 034915 (2010)

    Article  ADS  Google Scholar 

  59. R. Snellings et al., ALICE Collaboration, Anisotropic flow at the LHC measured with the ALICE detector. J. Phys. G 38, 124013 (2011)

    Google Scholar 

  60. J. Adams et al., STAR Collaboration, Particle-type dependence of Azimuthal anisotropy and nuclear modification of particle production in Au + Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV. Phys. Rev. Lett. 92, 052302 (2004)

    Google Scholar 

  61. D. Molnar, S.A. Voloshin, Elliptic flow at large transverse momenta from quark coalescence. Phys. Rev. Lett. 91, 092301 (2003); R.C. Hwa, C.B. Yang, Scaling distributions of quarks, mesons, and proton for all \(p_T\), energy, and centrality. Phys. Rev. C 67, 064902 (2003); R.C. Hwa, C.B. Yang, Measurement of event-plane correlations in \(\sqrt{s_{NN}}\)= 2.76 TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 70, 024905 (2004); R.C. Hwa, C.B. Yang, Recombination of shower partons in fragmentation processes. Phys. Rev. C 70, 024904 (2004)

    Google Scholar 

  62. S.S. Adler et al., PHENIX Collaboration, Scaling properties of proton and anti-proton production in \(\sqrt{s_{NN}}\) 200 GeV Au+Au collisions. Phys. Rev. Lett. 91, 172301 (2003)

    Google Scholar 

  63. L. Adamczyk et al., STAR Collaboration, Azimuthal anisotropy in Cu+Au collisions at \(\sqrt{s_{NN}}\)= 200 GeV. Phys. Rev. C 98, 014915 (2018)

    Google Scholar 

  64. A. Adare et al., PHENIX Collaboration, Systematic study of Azimuthal anisotropy in Cu + Cu and Au + Au collisions at \(\sqrt{s_{NN}}\)=62.4 and 200 GeV. Phys. Rev. C 92, 34913 (2015)

    Google Scholar 

  65. B.B. Abelev et al., ALICE Collaboration, Elliptic flow of identified hadrons in Pb-Pb collisions at \(\sqrt{s_{NN}}\)=2.76 TeV. JHEP 06, 190 (2015)

    Google Scholar 

  66. M. Aaboud et al., ATLAS Collaboration, Measurement of the Azimuthal anisotropy of charged particles produced in \(\sqrt{s_{NN}}\) = 5.02 TeV Pb+Pb collisions with the ATLAS detector. Eur. Phys. J. C 78, 997 (2018)

    Google Scholar 

  67. G. Aad et al., ATLAS Collaboration, Measurement of long-range pseudorapidity correlations and Azimuthal harmonics in \(\sqrt{s_{NN}}\) = 5.02 TeV proton-lead collisions with the ATLAS detector. Phys. Rev. C 90, 044906 (2014)

    Google Scholar 

  68. B.B. Back et al., PHOBOS Collaboration, Energy dependence of elliptic flow over a large pseudorapidity range in Au + Au collisions at RHIC. Phys. Rev. Lett. 94, 122303 (2005)

    Google Scholar 

  69. L. Kumar, for the STAR Collaboration, Results from the STAR beam energy scan program. Nucl. Phys. A 862, 125–131 (2011)

    Google Scholar 

  70. G. Kestin, U.W. Heinz, Hydrodynamic radial and elliptic flow in heavy-ion collisions from AGS to LHC energies. Eur. Phys. J. C 61, 545–552 (2009)

    Article  ADS  Google Scholar 

  71. H. Masui, J.Y. Ollibrault, R. Snellings, A. Tang, The centrality dependence of v(2)/epsilon: the ideal hydro limit and eta/s Nucl. Phys. A 830, 463C (2009)

    Google Scholar 

  72. M. Luzum, P. Romatschke, Viscous hydrodynamic predictions for nuclear collisions at the LHC. Phys. Rev. Lett. 103, 262302 (2009)

    Article  ADS  Google Scholar 

  73. T.H. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions. Phys. Lett. B 636, 299–304 (2006)

    Google Scholar 

Download references

Acknowledgements

Financial assistance from the Department of Science & Technology and University Grants Commission is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madan M. Aggarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aggarwal, M.M. (2021). Elliptic Flow in Relativistic Heavy-Ion Collisions. In: Puri, R.K., Aichelin, J., Gautam, S., Kumar, R. (eds) Advances in Nuclear Physics. Springer Proceedings in Physics, vol 257. Springer, Singapore. https://doi.org/10.1007/978-981-15-9062-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9062-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9061-0

  • Online ISBN: 978-981-15-9062-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics