Skip to main content

Addressing Crystal Structure in Semiconductor Nanowires by Polarized Raman Spectroscopy

  • Chapter
  • First Online:
Fundamental Properties of Semiconductor Nanowires

Abstract

Raman scattering is a powerful inelastic light scattering technique able to probe the vibrational properties of materials. This technique has been successfully employed in semiconductor nanowires to provide information on their fundamental properties, such as the phononic properties, the crystal composition, and the electronic band structure. When performed in a polarization-resolved manner on a single nanowire, Raman spectroscopy can even allow addressing the nanowire’s crystal structure. This is a fact of pivotal importance, as crystal phase is emerging as a novel degree of freedom in the bandgap engineering and phonon engineering of materials, and the control of the crystal phase is a possibility uniquely offered by nanowires. Indeed, recent advances in the synthetic growth of nanowires have given access to crystal phases (e.g., hexagonal phase in Si and Ge) that in the bulk can only be obtained under extreme pressure conditions, and it is possible to controllably switch between different crystal phases during the growth of nanowires. The realization and, even more, the interpretation of polarized Raman experiments on nanowires can be non-trivial, as several issues have to be considered. Therefore, in this chapter, we provide the basic theoretical background necessary to calculate Raman selection rules and interpret polarization-resolved Raman spectra of semiconductor nanowires. We also discuss the main ingredients of a Raman setup, with a focus on the scattering geometries typically used for nanowires. We highlight the main differences in the Raman spectra of nanowires with cubic and hexagonal crystal symmetries, and we treat also the case of the most challenging type of heterostructure: a nanoscale crystal-phase homostructure. Finally, we discuss resonant Raman experiments that allow the determination of the energy of some electronic transitions in nanowires. We focus mostly on a very new material system, namely Ge nanowires with controlled crystal phase, but the general procedure that we establish can be applied to several types of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In hexagonal lattices, the four index Bravais–Miller scheme is often used for indicating crystal directions, with [0001] labeling the c-axis direction.

References

  1. F. Bechstedt, A. Belabbes, Structure, energetics, and electronic states of III–V compound polytypes. J. Phys. Condens. Matter 25, 273201 (2013)

    Google Scholar 

  2. K. Takahashi, T. Morizumi, Growth of InAs whiskers in wurtzite structure. Japan. J. Appl. Phys. 5, 657 (1966)

    Article  CAS  Google Scholar 

  3. D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, F.M. Ross, Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317–322 (2016)

    Article  CAS  Google Scholar 

  4. P. Krogstrup, H.I. Jorgensen, E. Johnson, M.H. Madsen, C.B. Sorensen, A. Fontcuberta i Morral, M. Aagesen, J. Nygard, F. Glas, Advances in the theory of III–V nanowire growth dynamics. J. Phys. D Appl. Phys. 46, 313001 (2013)

    Google Scholar 

  5. P. Caroff, J. Bolinsson, J. Johansson, Crystal phases in III–V nanowires: from random toward engineered polytypism. IEEE J. Sel. Top. Quant. Electron. 17, 829 (2011)

    Article  CAS  Google Scholar 

  6. P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotech. 4, 50 (2009)

    Article  CAS  Google Scholar 

  7. K.A. Dick, C. Thelander, L. Samuelson, P. Caroff, Crystal phase engineering in single InAs nanowires. Nano Lett. 10, 3494 (2010)

    Article  CAS  Google Scholar 

  8. H.I.T. Hauge, M.A. Verheijen, S. Conesa-Boj, T. Etzelstorfer, M. Watzinger, D. Kriegner, I. Zardo, C. Fasolato, F. Capitani, P. Postorino et al., Hexagonal silicon realized. Nano Lett. 15, 5855–5860 (2015)

    Article  CAS  Google Scholar 

  9. L. Vincent, G. Patriarche, G. Hallais, C. Renard, C. Gardes, D. Troadec, D. Bouchier, Novel heterostructured Ge nanowires based on polytype transformation. Nano Lett. 14, 4828–4836 (2014)

    Article  CAS  Google Scholar 

  10. X. Cartoixà, M. Palummo, H.I.T. Hauge, E.P.A.M. Bakkers, R. Rurali, Optical emission in hexagonal SiGe nanowires. Nano Lett. 17, 4753–4758 (2017)

    Article  Google Scholar 

  11. E.M.T. Fadaly, A. Dijkstra, J. R. Suckert, et al., Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205–209 (2020)

    Google Scholar 

  12. M. De Luca, I. Zardo, Semiconductor Nanowires: Raman Spectroscopy Studies, in Raman Spectroscopy and Applications, ed. by K. Maaz (InTech, 2017)

    Google Scholar 

  13. B. Loitsch, J. Winnerl, G. Grimaldi, J. Wierzbowski, D. Rudolph, Crystal phase quantum dots in the ultrathin core of GaAs-AlGaAs Core-shell nanowires. Nano Lett. 15, 7544 (2015)

    Google Scholar 

  14. MB. Bavinck, KD. Jöns, M. Zieliński, G. Patriarche, JC. Harmand, N. Akopian, V. Zwiller, Photon cascade from a single crystal phase nanowire quantum dot. Nano Lett. 16, 1081 (2016)

    Google Scholar 

  15. A. De, C.E. Pryor, Predicted band structures of III–V semiconductors in the wurtzite phase. Phys. Rev. B 81, 155210 (2010)

    Article  Google Scholar 

  16. J.L. Birman, Simplified LCAO method for zincblende, wurtzite, and mixed crystal structures. Phys. Rev. B 115, 1493 (1959)

    Article  CAS  Google Scholar 

  17. M. Murayama, T. Nakayama, Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B 49, 4710 (1994)

    Article  CAS  Google Scholar 

  18. J. Ziy, X. Wan, G. Wei, K. Zhang, X. Xie, Lattice dynamics of zinc-blende GaN and AlN: I. Bulk phonons. J. Phys. Condens. Matter 8, 6323 (1996)

    Google Scholar 

  19. Harima, H, Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 14, R967–R993 (2002)

    Google Scholar 

  20. C.A. Arguello, D.L. Rousseau, S.P.S. Porto, First-order raman effect in wurtzite-type crystals. Phys. Rev. 181, 1351 (1969)

    Article  CAS  Google Scholar 

  21. M. Cardona, Light Scattering in Solids II (Springer Topics in Applied Physics), ed. by M. Cardona, G. Güntherodt, vol. 50 (Berlin: Springer, 1982), pp. 5019–178

    Google Scholar 

  22. B.R. Wu, First-principles study on the high-pressure behavior of the zone-center modes of lonsdaleite silicon. Phys. Rev. B 61, 5–8 (2000)

    Article  CAS  Google Scholar 

  23. M. Raya-Moreno, H. Aramberri, J.A. Seijas-Bellido, X. Cartoixà, R. Rurali, Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles. Appl. Phys. Lett. 111, 032107 (2017)

    Article  Google Scholar 

  24. M. De Luca, A. Polimeni, Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy. Appl. Phys. Rev. 4, 041102 (2017)

    Article  Google Scholar 

  25. I. Zardo, S. Conesa-Boj, F, Peiro, J.R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, A. Fontcuberta i Morral, Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects. Phys. Rev. B 80, 245324 (2009)

    Google Scholar 

  26. G. Turrel, J. Corset (ed.), Raman Microscopy Developments and Applications, 1st edn. (Malta: Academic Press, 1996). https://www.horiba.com/us/en/scientific/products/raman-spectroscopy/raman-academy/raman-faqs/what-analysis-spot-or-laser-spot-size-is-used-for-a-raman-microscope/

  27. Spectroscopy and Imaging GmbH. S&I Spectroscopy & Imaging GmbH, Warstein (Germany). (2015). https://www.s-and-i.eu/index.php/products/triple. Accessed 31 Mar 2019

  28. A. Glebov et al., Novel Volume Bragg Grating Notch Filters for Ultralow-Frequency Raman Measurements. The 3rd Scientific EOS Annual Meeting (EOSAM 2010), paper, vol. 4007. (2010)

    Google Scholar 

  29. NIST, Atomic Spectra Database Lines Form. (National Institute of Standards and Technology, US Department of Commerce, Gaithersburg, 1995). https://physics.nist.gov/PhysRefData/ASD/lines_form.html. Accessed 31 Mar 2019

  30. R. Loudon, The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964)

    Article  CAS  Google Scholar 

  31. M. De Luca, Addressing the electronic properties of III–V nanowires by photoluminescence excitation spectroscopy. J. Phys. D Appl. Phys. 50, 054001 (2017)

    Article  Google Scholar 

  32. J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455 (2001)

    Article  CAS  Google Scholar 

  33. H.E. Ruda, A. Shik, Polarization-sensitive optical phenomena in semiconducting and metallic nanowires. Phys. Rev. B 72, 115308 (2005)

    Article  Google Scholar 

  34. M. De Luca, A. Zilli, A. Fonseka, S. Mokkapati, A. Miriametro, H. Tan, L. Smith, C. Jagadish, M. Capizzi, A. Polimeni, Polarized light absorption in wurtzite InP nanowire ensembles. Nano Lett. 15, 998 (2015)

    Article  Google Scholar 

  35. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, In Electrodynamics of Continuous Media. (Pergamon, Oxford, UK, 1984), p. 3442

    Google Scholar 

  36. C. Fasolato, M. De Luca, D. Djomani, L. Vincent, C. Renard, G. Di Iorio, V. Paillard, M. Amato, R. Rurali, I. Zardo, Crystalline, phononic, and electronic properties of heterostructured polytypic Ge nanowires by Raman spectroscopy. Nano Lett. 18, 7075 (2018)

    Article  CAS  Google Scholar 

  37. M. Ramsteiner, O. Brandt, P. Kusch, S. Breuer, S. Reich, L. Geelhaar, Quenching of the E2 phonon line in the Raman spectra of wurtzite GaAs nanowires caused by the dielectric polarization contrast. Appl. Phys. Lett. 103, 043121 (2013)

    Article  Google Scholar 

  38. F.J. Lopez, J.K. Hyun, U. Givan, I.S. Kim, A.L. Holsteen, L.J. Lauhon, Diameter and polarization-dependent raman scattering intensities of semiconductor nanowires. Nano Lett. 12, 2266 (2012)

    Article  CAS  Google Scholar 

  39. J. Fréchette, C. Carraro, Diameter-dependent modulation and polarization anisotropy in Raman scattering from individual nanowires. Phys. Rev. B 74, 161404 (2006)

    Article  Google Scholar 

  40. M.Y. Swinkels, A. Campo, D. Vakulov, K. Wonjong, L. Gagliano, S. Escobar Steinvall, H. Detz, M. De Luca, A. Lugstein, E. Bakkers, A. Fontcuberta i Morral, I. Zardo, Measuring the optical absorption of single nanowires. Phys. Rev. Appl. 14, 024045 (2020)

    Google Scholar 

  41. J.H. Parker Jr., D.W. Feldman, M. Ashkin, Raman scattering by silicon and germanium. Phys. Rev. 155, 712 (1967)

    Article  CAS  Google Scholar 

  42. X. Gonze, J.-P. Vigneron, Density-functional approach to nonlinear-response coefficients of solids. Phys. Rev. B 39, 13120 (1989)

    Article  CAS  Google Scholar 

  43. J.F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1957)

    Google Scholar 

  44. S.A. Fortuna, X. Li, Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond. Sci. Technol. 25, 024005 (2010)

    Article  Google Scholar 

  45. D. de Matteis, M. De Luca, E.M.T. Fadaly, M.A. Verheijen, M. López-Suárez, R. Rurali, E.P.A.M. Bakkers, I. Zardo, Probing lattice dynamics and electronic resonances in hexagonal Ge and SixGe1-x alloys in nanowires by Raman spectroscopy. ACS Nano. 14(6), 6845–6856 (2020)

    Google Scholar 

  46. A.A. Kelly, K.M. Knowles, Crystallography and Crystal Defects, 2nd edn. (Wiley, Weinheim, Germany, 2012)

    Book  Google Scholar 

  47. M. De Luca, C. Fasolato, M.A. Verheijen, Y. Ren, M.Y. Swinkels, S. Kölling, E.P.A.M. Bakkers, R. Rurali, I. Zardo, Phonon engineering in twinning superlattice nanowires. Nano Lett. 19, 4702 (2019)

    Article  Google Scholar 

  48. F. Cerdeira, W. Dreybrodt, M. Cardona, Resonant Raman scattering in germanium. Solid State Comm. 10, 591 (1972)

    Article  CAS  Google Scholar 

  49. T. Kaewmaraya, L. Vincent, M. Amato, Accurate estimation of band offsets in group IV polytype junctions: a first-principles study. J. Phys. Chem. C 121, 5820 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.F. acknowledges financial support from The Sapienza University scholarship “Borsa di Perfezionamento all’Estero 2017-2018.” I.Z. acknowledges financial support from the Swiss National Science Foundation research grant (Project Grant No. 200021_165784) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 756365). M.D.L. acknowledges support from the Swiss National Science Foundation Ambizione grant (Grant No. PZ00P2_179801). We thank Laetitia Vincent and Erik P.A.M. Bakkers for providing us with samples, Riccardo Rurali and Michele Amato for theoretical calculations, Diego De Matteis for the measurements in Figure 12, and Marcel A. Verheijen for the TEM in Figure 15. C.F. is thankful to professor Paolo Piccinni from Sapienza University for the fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta De Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fasolato, C., Zardo, I., De Luca, M. (2021). Addressing Crystal Structure in Semiconductor Nanowires by Polarized Raman Spectroscopy. In: Fukata, N., Rurali, R. (eds) Fundamental Properties of Semiconductor Nanowires. Springer, Singapore. https://doi.org/10.1007/978-981-15-9050-4_7

Download citation

Publish with us

Policies and ethics