Skip to main content

Abstract

The phenomenon by which the death of cells, tissues, and organs occurs in plants is called “senescence.” It is characterized by a decrease in photosynthesis, gradual decomposition of chloroplast pigment, and changes in protein and nucleic acid levels. It has long been recognized that plant hormones affect leaf senescence. Some plant hormones like ethylene, jasmonic acid, abscisic acid, and salicylic acid promote senescence. Others such as cytokinin and auxin delay leaf senescence. Meta-topolin (mT) is a more recently discovered aromatic cytokinin isolated from poplar leaves. mT prevents the rapid decomposition of chlorophyll and protein molecules during senescence in various plants. Delay in senescence and decrease in loss of total chlorophyll amount in plants that were treated with mT have been reported by different researchers. It is thought that mT can be a potential alternative to other cytokinins controlling the senescence process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ambler JR, Morgan PW, Jordan WR (1987) Genetic regulation of senescence in a tropical grass. In: Thomson WW, Nothnagel EA, Huffaker RC (eds) Plant senescence: its biochemistry and physiology. American Society of Plant Physiologists, USA, Rockville, MD, pp 43–53

    Google Scholar 

  • Ansari MI, Lee RH, Chen SCG (2005) A novel senescence-associated gene encoding γ-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant 123(1):1–8

    Article  Google Scholar 

  • Arteca RN (1996) Plant growth substances: principles and applications. Chapman and Hall, New York, NY

    Google Scholar 

  • Bairu MW, Stirk WA, Dolezal K, Van Staden J (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant cell. Tiss Organ Cult 90(1):15–23

    Article  Google Scholar 

  • Beevers L, Guernsey FS (1967) Interaction of growth regulators in the senescence of Nasturtium leaf disks. Nature 214(5091):941–942

    Article  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181(2):413–423

    Article  Google Scholar 

  • Belknap WR, Garbarino JE (1996) The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci 1(10):331–335

    Article  Google Scholar 

  • Biswal B, Biswal UC (1999) Leaf senescence: physiology and molecular biology. Curr Sci 77:775–782

    Google Scholar 

  • Bleecker AB, Patterson SE (1997) Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9(7):1169

    Article  Google Scholar 

  • Bogaert I, Van Cauter S, Werbrouck SPO, Dolezal K (2004) New aromatic cytokinins can make the difference. ISHS Acta Hortic 725:265–270

    Google Scholar 

  • Borrás L, Maddonni GA, Otegui ME (2003) Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crop Res 82(1):13–26

    Article  Google Scholar 

  • Brault M, Maldiney R (1999) Mechanisms of cytokinin action. Plant Physiol Biochem 37(5):403–412

    Article  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48(2):181–199

    Article  Google Scholar 

  • Buchanan-Wollaston V, Ainsworth C (1997) Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Mol Biol 33(5):821–834

    Article  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotechnol J 1(1):3–22

    Article  Google Scholar 

  • Çag S, Palavan-Ünsal N, Büyüktuncer D (2003) Comparison of the effects of meta-topolin and other cytokinins on chlorophyll and protein contents and peroxidase activity in cucumber cotyledons. Israel J Plant Sci 51(4):261–265

    Article  Google Scholar 

  • Carimi F, Zottini M, Formentin E, Terzi M, Schiavo FL (2003) Cytokinins: new apoptotic inducers in plants. Planta 216(3):413–421

    Article  Google Scholar 

  • Carimi F, Terzi M, De Michele R, Zottini M, Schiavo FL (2004) High levels of the cytokinin BAP induce PCD by accelerating senescence. Plant Sci 166(4):963–969

    Article  Google Scholar 

  • Chandlee JM (2001) Current molecular understanding of the genetically programmed process of leaf senescence. Physiol Plant 113(1):1–8

    Article  Google Scholar 

  • Dangl JL (2000) Senescence and programmed cell death. In: Biochemistry and molecular biology of plants, pp 1044–1100

    Google Scholar 

  • Del Duca S, Serafini-Fracassini D, Cai G (2014) Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front Plant Sci 5:1–17

    Google Scholar 

  • Downs CG, Somerfield SD, Davey MC (1997) Cytokinin treatment delays senescence but not sucrose loss in harvested broccoli. Postharvest Biol Technol 11(2):93–100

    Article  Google Scholar 

  • Even-Chen Z, Atsmon D, Itai C (1978) Hormonal aspects of senescence in detached tobacco leaves. Physiol Plant 44(4):377–382

    Article  Google Scholar 

  • Galston AW, Davies PJ (1970) Control mechanisms in plant development. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113(2):313–319

    Article  Google Scholar 

  • Goren N (2004) The effect of auxin and cytokinins on sequential leaf senescence on Helianthus annuus L. seedlings. Master’s Thesis, Istanbul University, Istanbul, Turkey

    Google Scholar 

  • Grbić V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8(4):595–602

    Article  Google Scholar 

  • Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci 93(22):12094–12097

    Article  Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82(6):603–622

    Article  Google Scholar 

  • Guarente L, Ruvkun G, Amasino R (1998) Aging, life span, and senescence. Proc Natl Acad Sci 95(19):11034–11036

    Article  Google Scholar 

  • Gully K, Hander T, Boller T, Bartels S (2015) Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence. Front Plant Sci 6:1–10

    Article  Google Scholar 

  • Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotechnol 10(45):8984–9000

    Article  Google Scholar 

  • Hare PD, Van Staden J (1994) Cytokinin oxidase: biochemical features and physiological significance. Physiol Plant 91(1):128–136

    Article  Google Scholar 

  • Hayat S, Mori M, Fariduddin Q, Bajguz A, Ahmad A (2010) Physiological role of brassinosteroids: an update. Indian J Plant Physiol 15:99–109

    Google Scholar 

  • He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126(2):707–716

    Article  Google Scholar 

  • Heindl JC, Carlson DR, Brun WA, Brenner ML (1982) Ontogenetic variation of four cytokinins in soybean root pressure exudate. Plant Physiol 70(6):1619–1625

    Article  Google Scholar 

  • Hildebrand F (1882) Die Lebensdauer und Vegetationsweise der Pflanzen, ihre Ursachen und Entwicklung. Botanisches Jahrbuch 2:51–135

    Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158(10):1317–1323

    Article  Google Scholar 

  • Holub J, Hanuš J, Hanke DE, Strnad M (1998) Biological activity of cytokinins derived from ortho-and meta-hydroxybenzyladenine. Plant Growth Regul 26(2):109–115

    Article  Google Scholar 

  • Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K (2018) Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int J Mol Sci 19(12):1–23

    Article  Google Scholar 

  • Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan M (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 8:1–19

    Article  Google Scholar 

  • James AL, Anderson IC, Greer HAL (1965) Effects of naphthaleneacetic acid on field-grown soybeans 1. Crop Sci 5(5):472–474

    Article  Google Scholar 

  • Jibran R, Hunter DA, Dijkwel PP (2013) Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol 82(6):547–561

    Article  Google Scholar 

  • Jones AM, Dangl JL (1996) Logjam at the Styx: programmed cell death in plants. Trends Plant Sci 1(4):114–119

    Article  Google Scholar 

  • Kalra G, Bhatla SC (2018) Senescence and programmed cell death. In: Plant physiology, development and metabolism. Springer, Singapore, pp 937–966

    Chapter  Google Scholar 

  • Kaplan E (2005) Investigation of relationship between senescence and gravitropism with Brassinosteroids in Helianthus annuus L. seedlings. Master’s Thesis, Istanbul University, Istanbul, Turkey

    Google Scholar 

  • Kappers IF, Jordi W, Maas FM, Stoopen GM, Van Der Plas LHW (1998) Gibberellin and phytochrome control senescence in alstroemeria leaves independently. Physiol Plant 103(1):91–98

    Article  Google Scholar 

  • Karataș İ, Öztürk L, Okatan Y (2016) Effects of gibberellic acid and 6-benzylaminopurine on some biochemical parameters during dark-induced leaf senescence. Gaziosmanpașa Üniversitesi Ziraat Fakültesi Dergisi 33(1):17–24

    Google Scholar 

  • Khan M, Rozhon W, Poppenberger B (2014) The role of hormones in the aging of plants—a mini-review. Gerontology 60(1):49–55

    Article  Google Scholar 

  • Li Z, Peng J, Wen X, Guo H (2012) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of arabidopsis leaf senescence f. J Integr Plant Biol 54(8):526–539

    Article  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8(6):272–278

    Article  Google Scholar 

  • Lindoo SJ, Noodén LD (1977) Studies on the behavior of the senescence signal in Anoka soybeans. Plant Physiol 59(6):1136–1140

    Article  Google Scholar 

  • Liu X, Huang B (2002) Cytokinin effects on creeping bentgrass response to heat stress. Crop Sci 42(2):466–472

    Google Scholar 

  • Majid I, Abbas N (2019) Signal transduction in leaf senescence: an overview. In: Sarwat M, Tuteja N (eds) Senescence signalling and control in plants. Elsevier, Amsterdam, pp 41–59

    Chapter  Google Scholar 

  • Molisch H (1929) Die Lebensdauer der Pflanzen. Gustav Fischer, Jena, 168 pp

    Google Scholar 

  • Moore TC (1979) Ethylene. In: Moore TC (ed) Biochemistry and physiology of plant hormones. Springer, New York, NY, pp 208–229

    Chapter  Google Scholar 

  • Morris K, Mackerness SAH, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23(5):677–685

    Article  Google Scholar 

  • Mutui TM, Mibus H, Serek M (2012) Effect of meta-topolin on leaf senescence and rooting in Pelargonium×hortorum cuttings. Postharvest Biol Technol 63(1):107–110

    Article  Google Scholar 

  • Mutui TM, Mibus H, Serek M (2014) Cytokinins inhibit leaf senescence in Pelargonium cuttings. ISHS Acta Hortic 1079:325–330

    Google Scholar 

  • Nam HG (1997) The molecular genetic analysis of leaf senescence. Curr Opin Biotechnol 8(2):200–207

    Article  Google Scholar 

  • Nooden LD, Leopold AC (1988) Senescence and aging in plants. Academic Press, San Diego, CA

    Google Scholar 

  • Nooden LD, Guiamet JJ, John I (1997) Senescence mechanisms. Physiol Plant 101:746–753

    Article  Google Scholar 

  • Osborne DJ (1967) Hormonal regulation of leaf senescence. Symp Soc Exp Biol 21:305–321

    Google Scholar 

  • Osborne DJ, Hallaway M (1960) Auxin control of protein-levels in detached autumn leaves. Nature 188(4746):240–241

    Article  Google Scholar 

  • Palavan-Ünsal N, Çağ S, Çetin E, Büyüktunçer D (2002) Retardation of senescence by meta-topolin in wheat leaves. J Cell Mol Biol 1:101–108

    Google Scholar 

  • Palavan-Ünsal N, Cag S, Çetin E (2004) The role of meta-topolin in senescence of wheat leaf segments. J Mol Cell Biol 3:23–31

    Google Scholar 

  • Palni LMS, Burch L, Horgan R (1988) The effect of auxin concentration on cytokinin stability and metabolism. Planta 174(2):231–234

    Article  Google Scholar 

  • Paranjothy K, Wareing PF (1971) The effects of abscisic acid, kinetin and 5-fluorouracil on ribonucleic acid and protein synthesis in senescing radish leaf disks. Planta 99(2):112–119

    Article  Google Scholar 

  • Park JH, Oh SA, Kim YH, Woo HR, Nam HG (1998) Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Mol Biol 37(3):445–454

    Article  Google Scholar 

  • Parthier B (1990) Jasmonates: hormonal regulators or stress factors in leaf senescence? J Plant Growth Regul 9(1–4):57–63

    Article  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9(7):1157–1168

    Article  Google Scholar 

  • Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D (1993) Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J 3(3):469–481

    Article  Google Scholar 

  • Quirino BF, Noh Y-S, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5(7):278–282

    Article  Google Scholar 

  • Richmond AE, Lang A (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125(3249):650–651

    Article  Google Scholar 

  • Sağlam NG (2015) Leaf senescence: a view of its physiological and molecular regulation. Marmara Fen Bilimleri Dergisi 27(3):83–92

    Google Scholar 

  • Saglam Cag S (1997) The effects of mineral nutrients and growth regulators on the mechanism of sequential leaf senescence in Helianthus annuus L. Doctoral Thesis, Istanbul University, Istanbul, Turkey

    Google Scholar 

  • Singh S, Letham DS, Palni LMS (1992) Cytokinin biochemistry in relation to leaf senescence. VIII. Translocation, metabolism and biosynthesis of cytokinins in relation to sequential leaf senescence of tobacco. Physiol Plant 86(3):398–406

    Article  Google Scholar 

  • Sitton D, Itai C, Kende H (1967) Decreased cytokinin production in the roots as a factor in shoot senescence. Planta 73(3):296–300

    Article  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126(3):419–448

    Article  Google Scholar 

  • Smart CM, Scofield SR, Bevan MW, Dyer TA (1991) Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in agrobacterium. Plant Cell 3(7):647–656

    Article  Google Scholar 

  • Springer A, Kang C, Rustgi S, Von Wettstein D, Reinbothe C, Pollmann S, Reinbothe S (2016) Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX). Proc Natl Acad Sci 113(12):3383–3388

    Article  Google Scholar 

  • Srivalli B, Khanna-Chopra R (2001) Induction of new isoforms of superoxide dismutase and catalase enzymes in the flag leaf of wheat during monocarpic senescence. Biochem Biophys Res Commun 288(4):1037–1042

    Article  Google Scholar 

  • Srivastava LM (2002) Plant growth and development hormones and environment. Academic Press, San Diego, CA

    Google Scholar 

  • Storey R, Beevers L (1977) Proteolytic activity in relationship to senescence and cotyledonary development in Pisum sativum L. Planta 137(1):37–44

    Article  Google Scholar 

  • Strnad M (1997) The aromatic cytokinins. Physiol Plant 101(4):674–688

    Article  Google Scholar 

  • Tarkowská D, Doležal K, Tarkowski P, Åstot C, Holub J, Fuksová K, Schmülling T, Sandberg G, Strnad M (2003) Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus× canadensis leaves by LC-(+) ESI-MS and capillary liquid chromatography/frit–fast atom bombardment mass spectrometry. Physiol Plant 117(4):579–590

    Article  Google Scholar 

  • Thimann KV (1978) Senescence. Bot Mag Tokyo 1:19–43

    Google Scholar 

  • Thimann KV (1980) The senescence of leaves. In: Thimann KV (ed) Senescence in plants. CRC, Boca Raton, FL, pp 85–115

    Google Scholar 

  • Thomas H (2013) Senescence, aging and death of the whole plant. New Phytol 197(3):696–711

    Article  Google Scholar 

  • Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54(385):1127–1132

    Article  Google Scholar 

  • Thompson JE, Froese CD, Madey E, Smith MD, YuWen H (1998) Lipid metabolism during plant senescence. Progr Lipid Res (UK) 37(2–3):119–141

    Article  Google Scholar 

  • Turkyilmaz Unal B (2018) Thidiazuron as an elicitor in the production of secondary metabolite. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer, Singapore, pp 463–470

    Chapter  Google Scholar 

  • Vlčková A, Špundová M, Kotabová E, Novotný R, Doležal K, Nauš J (2006) Protective cytokinin action switches to damaging during senescence of detached wheat leaves in continuous light. Physiol Plant 126(2):257–267

    Article  Google Scholar 

  • Werbrouck SP, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol Plant 98(2):291–297

    Article  Google Scholar 

  • Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998) Regulation of leaf senescence by cytokinin, sugars, and light: effects on NADH-dependent hydroxypyruvate reductase. Plant Physiol 116(1):329–335

    Article  Google Scholar 

  • Woolhouse HW (1983) Hormonal control of senescence allied toreproduction in plants. In: Meudt WJ (ed) Strategies of plant reproduction. Allanheld, Osmun and Co, Totowa, NJ, pp 201–236

    Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280(5366):1091–1094

    Article  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6(1):79–84

    Article  Google Scholar 

  • Zentgraf U, Jobst J, Kolb D, Rentsch D (2004) Senescence-related gene expression profiles of rosette leaves of Arabidopsis thaliana: leaf age versus plant age. Plant Biol 6(2):178–183

    Article  Google Scholar 

  • Zwack PJ, Rashotte AM (2013) Cytokinin inhibition of leaf senescence. Plant Signal Behav 8(7):e24737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemil Işlek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Işlek, C. (2021). Effect of Meta-Topolins on Senescence. In: Ahmad, N., Strnad, M. (eds) Meta-topolin: A Growth Regulator for Plant Biotechnology and Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-9046-7_7

Download citation

Publish with us

Policies and ethics