Skip to main content

Wood-Based Phenolic Composites

  • Chapter
  • First Online:
Phenolic Polymers Based Composite Materials

Part of the book series: Composites Science and Technology ((CST))

Abstract

Wood-based composites, also known as engineered wood products, wood-based products or reconstituted woods, are wood components that have been widely accepted as structural and non-structural components in product lines ranging from panels for interior and exterior purposes to furniture and support structures in building construction. Wood adhesives have played a major role in the woodworking industry with the aim to bond the wooden materials with each other or with other materials. Phenolic-based resins have more than a hundred-year history. They have been broadly used as the adhesives in woodworking industry. This chapter aims to review and discuss the development and performance of wood-based phenolic composites used in a variety of applications. It covers current knowledge and provides significant insight based on the recent research on wood-based phenolic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DJ, Ishida H (2001) Thermosets: phenolics, novolacs, and benzoxazine. In: Buschow KHJ, Cahn RW, Flemings MC et al (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 9226–9229. https://doi.org/https://doi.org/10.1016/B0-08-043152-6/01662-4

  • Antov P, Savov V, Mantanis GI, Neykov N (2020) Medium-density fibreboards bonded with phenol-formaldehyde resin and calcium lignosulfonate as an eco-friendly additive. Wood Mater Sci Eng:1–7. https://doi.org/10.1080/17480272.2020.1751279. Construction and Industrial Plywood, Voluntary Product Standard PS 1 (1995) US Department of Commerce

  • Bal BC (2014a) Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber. Constr Build Mater 51:9–14. https://doi.org/10.1016/j.conbuildmat.2013.10.041

    Article  Google Scholar 

  • Bal BC (2014b) Some physical and mechanical properties of reinforced laminated veneer lumber. Constr Build Mater 68:120–126. https://doi.org/10.1016/j.conbuildmat.2014.06.042

    Article  Google Scholar 

  • Bal BC (2016) Some technical properties of laminated veneer lumber produced with fast-growing poplar and eucalyptus. Maderas Ciencia y technologia 18(3):413–424

    Google Scholar 

  • Bal BC, Bektas I (2012) The effects of some factors on the impat bending strength of laminated veneer lumber. BioResources 7(4):5855–5863

    Google Scholar 

  • Chowdhury S, Yadama V (2011) Reactive maleic anhydride polyolefins (MAPOs) in oriented strand board. Part 2: influence on physical and mechanical properties. Holzforschung 65(1):89. https://doi.org/10.1515/hf.2011.002

  • Chowdhury S, Yadama V, Laborie M-P (2011) Reactive maleic anhydride polyolefins (MAPOs) in oriented strand board. Part 1: dynamic thermomechanical properties of phenol formaldehyde resins blended with two MAPOs. Holzforschung 65(1):81. https://doi.org/10.1515/hf.2010.105

  • Colakoglu G, Semra C, Ismail A, Yu C, Sibel Y (2003) Effect of boric acid treatment on mechanical properties of laminated beech veneer lumber. Silva Fennica 37(4):505–510

    Article  Google Scholar 

  • Currie WE (1997) The environmental advantages of using diffusible preservatives, pp 38–41

    Google Scholar 

  • Derkowski A, Mirski R, Majka J (2015) Determination of sorption isotherms of Scots pine (Pinus Sylvestris L.) wood strands loaded with melamine-urea-phenol-formaldehyde (MUPF) resin. Wood Res 60(2):201–210

    Google Scholar 

  • de Souza F, Del Menezzi CHS, Bortoletto Júnior G (2011) Material properties and nondestructive evaluation of laminated veneer lumber (LVL) made from Pinus oocarpa and P. kesiya. European J Wood Wood Prod 69(2):183–192. https://doi.org/10.1007/s00107-010-0415-0

  • Fabris HJ, Knauss WG (1989) 5—Synthetic polymer adhesives. In: Allen G, Bevington JC (eds) Comprehensive polymer science and supplements. Pergamon, Amsterdam, pp 131–177. https://doi.org/https://doi.org/10.1016/B978-0-08-096701-1.00208-1

  • FAOSTAT Statistical Database (2019) Food and Agriculture Organization of the United Nations (FAO). Accessed 16 Oct 2019

    Google Scholar 

  • Feng MW, He G, Andersen AW (2010) Effects of esters and resorcinol on phenolic resins as adhesives in medium-density fiberboard manufacturing. Wood Fiber Sci 42(2):192–201

    CAS  Google Scholar 

  • Fink JK (2013) Chapter 4—Phenol/formaldehyde resins, 2nd edn. In: Fink JK (ed) Reactive polymers fundamentals and applications. William Andrew Publishing, Oxford, pp 155–177. https://doi.org/https://doi.org/10.1016/B978-1-4557-3149-7.00004-8

  • Frihart CR (2012) Wood adhesion and adhesives, 2nd edn. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Baton, FL

    Google Scholar 

  • Frihart CR (2015) Introduction to special issue: wood adhesives: past, present, and future. Forest Prod J 65(1–2):4–8. https://doi.org/10.13073/65.1-2.4

  • Frihart CR, Hunt CG (2010) Adhesives with wood materials bond formation and performance. In: Ross RJ (ed) Wood handbook: wood as an engineering material. U.S. Dept. of Agriculture, Forest Service, Madison, Wisconsin

    Google Scholar 

  • Gardner DJ (2006) Adhesion mechanisms of durable wood adhesive bonds. In: Stokke DD, Groom LH (eds) Characterization of the cellulosic cell wall. Blackwell Publishing, Iowa, USA, pp 254–265. https://doi.org/10.1002/9780470999714.ch19

  • Gunduz G, Yapici F, Ozcifci A, Kalaycioglu H (2011) The effects of adhesive ratio and pressure time on some properties of oriented starnd board. BioResources 6(2):2118–2124

    Google Scholar 

  • Hiziroglu S (2006) Oriented strand board as a building material. Oklahome Cooperative Extension Fact Sheet, FAPC-146, Food and Agricultural Products Research Center

    Google Scholar 

  • H’ng PS, Paridah MT, Chin KL (2010) Bending properties of laminated veneer lumber produced from keruing (Dipterocarpus sp.) reinforced with low density wood species. Asian J Sci Res:1–8

    Google Scholar 

  • Hirano K, Asami M (2013) Phenolic resins—100 years of progress and their future. React Funct Polym 73(2):256–269. https://doi.org/10.1016/j.reactfunctpolym.2012.07.003. Oriented Strand Board as a Building Material (2017) Oklahome Cooperative Extension Service. Accessed 21 Oct 2019

    Article  CAS  Google Scholar 

  • Hoareau W, Oliveira FB, Grelier S, Siegmund B, Frollini E, Castellan A (2006) Fiberboards based on sugarcane bagasse lignin and fibers. Macromol Mater Eng 291(7):829–839. https://doi.org/10.1002/mame.200600004

    Article  CAS  Google Scholar 

  • Hoong Y, Paridah M (2013) Development a new method for pilot scale production of high grade oil palm plywood: effect of hot-pressing time. Mater Des 45(C):142–147. https://doi.org/10.1016/j.matdes.2012.08.054

  • Hoong YB, Loh YF, Nor Hafizah AW, Paridah MT, Jalaluddin H (2012) Development of a new pilot scale production of high grade oil palm plywood: effect of pressing pressure. Mater Des 1980–2015(36):215–219. https://doi.org/10.1016/j.matdes.2011.10.004

    Article  Google Scholar 

  • Hoong YB, Loh YF, Chuah LA, Juliwar I, Pizzi A, Tahir Paridah M, Jalaluddin H (2013) Development a new method for pilot scale production of high grade oil palm plywood: effect of resin content on the mechanical properties, bonding quality and formaldehyde emission of palm plywood. Mater Des 1980–2015(52):828–834. https://doi.org/10.1016/j.matdes.2013.05.082

    Article  CAS  Google Scholar 

  • Kamala BS, Kumar P, Rao RV, Sharma SN (1999) Performance test of laminated veneer lumber (lvl) from rubber wood for different physical and mechanical properties. Holz Als Roh- Und Werkstoff 57(2):114–116. https://doi.org/10.1007/s001070050025

    Article  CAS  Google Scholar 

  • Kamke FA (2001) Wood: nonstructural panel processes, 2nd edn. In: Encyclopedia of materials: science and technology. Elsevier Ltd., pp 9673–9678. https://doi.org/10.1016/B0-08-043152-6/01754-X

  • Kurt R, Meric H, Aslan K, Cil M (2012) Laminated veneer lumber (LVL) manufacturing using three hybrid poplar clones. Turkish J Agric Forest 36:237–245

    Google Scholar 

  • Lee S, Wu Q, Strickland B (2004) Formosan subterranean termite resistance of borate-modified strandboard manufactured from southern wood species: A laboratory trial. Wood Fiber Sci 36(1):107–118

    CAS  Google Scholar 

  • Lee SM, Kim MG (2007) Effects of urea and curing catalysts added to the strand board core-layer binder phenol–formaldehyde resin. J Appl Polym Sci 105(3):1144–1155. https://doi.org/10.1002/app.26233

    Article  CAS  Google Scholar 

  • Lei Y, Wu Q (2006) Cure kinetics of aqueous phenol-formaldehyde resins used for oriented strandboard manufacturing: effect of wood flour. J Appl Polym Sci 102(4):3774–3781. https://doi.org/10.1002/app.24739

    Article  CAS  Google Scholar 

  • Lei Y, Wu Q, Lian K (2006) Cure kinetics of aqueous phenol–formaldehyde resins used for oriented strandboard manufacturing: analytical technique. J Appl Polym Sci 100(2):1642–1650. https://doi.org/10.1002/app.23756

    Article  CAS  Google Scholar 

  • Lei H, Du G, Pizzi A, Celzard A, Fang Q (2010) Influence of nanoclay on phenol-formaldehyde and phenol-urea-formaldehyde resins for wood adhesives. J Adhes Sci Technol 24(8–10):1567–1576. https://doi.org/10.1163/016942410X500945

    Article  CAS  Google Scholar 

  • Loh YF, Paridah MT, Hoong YB, Yoong ACC (2011) Effects of treatment with low molecular weight phenol formaldehyde resin on the surface characteristics of oil palm (Elaeis quineensis) stem veneer. Mater Des 32(4):2277–2283. https://doi.org/10.1016/j.matdes.2010.11.014

    Article  CAS  Google Scholar 

  • Medium Density Fiberboard Market (MDF)—Industry Analysis and Forecast (2016–2026) By Type, Applications and Geography (2018) Maximize Market Research Pvt Ltd. Accessed 12 Oct 2019

    Google Scholar 

  • Marra AA (1992) Technology of wood bonding: principles in practice, 1st edn. In: Technology of wood bonding: principles in practice. Springer, Van Nostrand Reinhold, pp 76–80

    Google Scholar 

  • Mirzaei B, Sinha A, Nairn John A (2016) Assessing the role of adhesives in durability of laminated veneer lumber (LVL) by fracture mechanics. Holzforschung 70(8):763. https://doi.org/10.1515/hf-2015-0193

    Article  CAS  Google Scholar 

  • Nuryawan A, Abdullah CK, Hazwan CM, Olaiya NG, Yahya EB, Risnasari I, Masruchin N, Baharudin MS, Khalid H, Khalil HPSA (2020) Enhancement of oil palm waste nanoparticles on the properties and characterization of hybrid plywood biocomposites. Polymers 12(5)

    Google Scholar 

  • Ormondroyd GA (2015) 3—Adhesives for wood composites. In: Ansell MP (ed) Wood composites. Woodhead Publishing, pp 47–66. https://doi.org/https://doi.org/10.1016/B978-1-78242-454-3.00003-2

  • Özçifçi A (2007) Effects of scarf joints on bending strength and modulus of elasticity to laminated veneer lumber (LVL). Build Environ 42(3):1510–1514. https://doi.org/10.1016/j.buildenv.2005.12.024

    Article  Google Scholar 

  • Özçifçi A, Örs Y, Uysal B (2007) Determination of some physical and mechanical properties of laminated veneer lumber impregnated with boron compounds. J Appl Polym Sci 105(4):2218–2224. https://doi.org/10.1002/app.26217

    Article  CAS  Google Scholar 

  • Pan Z, Cathcart A, Wang D (2006) Properties of particleboard bond with rice bran and polymeric methylene diphenyl diisocyanate adhesives. Ind Crops Prod 23(1):40–45. https://doi.org/10.1016/j.indcrop.2005.03.004

    Article  CAS  Google Scholar 

  • Paridah MT, Zaidon A, Chuo TW, Zakiah A, Anwar UMK (2012) Accelerated and outdoor Ageings of laminated veneer lumber and their correlations with strength and stiffness. J Trop Forest Sci 24(4):465–473

    Google Scholar 

  • Park B-D, Riedl B, Hsu EW, Shields J (1998) Effects of weight average molecular mass of phenol-formaldehyde adhesives on medium density fiberboard performance. Holz Als Roh- Und Werkstoff 56(3):155. https://doi.org/10.1007/s001070050289

    Article  CAS  Google Scholar 

  • Park B-D, Riedl B, Park S-J (1999b) Phenol-formaldehyde (PF) resin bonded medium density fiberboard. Mokchae Konghak 27(1):64–71

    Google Scholar 

  • Park B-D, Riedl B, Hsu EW, Shields J (1999a) Differential scanning calorimetry of phenol–formaldehyde resins cure-accelerated by carbonates. Polymer 40(7):1689–1699. https://doi.org/10.1016/S0032-3861(98)00400-5

    Article  CAS  Google Scholar 

  • Park B-D, Kim YS, Riedl B (2001a) Effect of wood-fiber characteristics on medium density fiberboard (MDF) performance. Mokchae Konghak 29(3):27–35

    Google Scholar 

  • Park B-D, Riedl B, Hsu EW, Shields J (2001b) Application of cure-accelerated phenol-formaldehyde (PF) adhesives for three-layer medium density fiberboard (MDF) manufacture. Wood Sci Technol 35(4):311–323. https://doi.org/10.1007/s002260100095

    Article  CAS  Google Scholar 

  • Phenolic Resins Market Size, Share, Industry Trend Report, 2019-2025 (2019) Grand View Research. https://www.grandviewresearch.com/industry-analysis/phenolic-resins-market. Accessed 9 October 2019

  • Pilato L (2013) Phenolic resins: 100 years and still going strong. React Funct Polym 73(2):270–277. https://doi.org/10.1016/j.reactfunctpolym.2012.07.008

    Article  CAS  Google Scholar 

  • Pizzi A (2003) Phenolic resin adhesives. In: Pizzi A, Mittal KL (eds) Handbook of adhseive technology. Marcel Dekker Inc., New York, NY

    Google Scholar 

  • Pizzi A (2017) Urea and melamine aminoresin adhesives. In: Handbook of adhesive technology. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Ramage MH, Burridge H, Busse-Wicher M, Fereday G, Reynolds T, Shah DU, Wu G, Yu L, Fleming P, Densley-Tingley D, Allwood J, Dupree P, Linden PF, Scherman O (2017) The wood from the trees: the use of timber in construction. Renew Sustain Energy Rev 68:333–359. https://doi.org/10.1016/j.rser.2016.09.107

    Article  Google Scholar 

  • Shi S, Walker JCF (2006) Wood-based composites: plywood and veneer-based products. In: Walker JCF (ed) Primary wood processing: principles and practice. Springer Netherlands, Dordrecht, pp 391–426. https://doi.org/10.1007/1-4020-4393-7_11

  • Smailagić A, Veljović S, GaÅ¡ić U, Zagorac DD, Stanković M, Radotić K, Natić M (2019) Phenolic profile, chromatic parameters and fluorescence of different woods used in Balkan cooperage. Ind Crops Prod 132:156–167. https://doi.org/10.1016/j.indcrop.2019.02.017

    Article  CAS  Google Scholar 

  • Stark NM, Cai Z, Carll C (2010) Wood-based composite materials: panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials. In: Ross RJ (ed) Wood handbook: wood as an engineering material. U.S. Dept. of Agriculture, Forest Service, Madison, Wisconsin

    Google Scholar 

  • Stagg R, Ward S (2019) Forestry Statistic 2019, Chapter 9: International Forestry

    Google Scholar 

  • Suchsland O, Woodson GE (1987) Fiberboard manufacturing practices in the United State. U.S, Department of Agriculture, Forest Service

    Google Scholar 

  • Sulaiman O, Salim N, Hashim R, Yusof LHM, Razak W, Yunus NYM, Hashim WS, Azmy MH (2009) Evaluation on the suitability of some adhesives for laminated veneer lumber from oil palm trunks. Mater Des 30(9):3572–3580. https://doi.org/10.1016/j.matdes.2009.02.027

    Article  CAS  Google Scholar 

  • Tang RC, Pu JH (1997) Edgewise bending properties of laminated veneer lulmber: effect of veneer grade and relative humidity. Forest Prod J 47(5):64–70

    Google Scholar 

  • Tang Q, Fang L, Guo W (2017) Investigation into mechanical, thermal, flame-retardant properties of wood fiber reinforced ultra-high-density fiberboards. BioResources 12(3):6749–6762

    Article  CAS  Google Scholar 

  • Tenorio C, Moya R, Muñoz F (2011) Comparative study on physical and mechanical properties of laminated veneer lumber and plywood panels made of wood from fast-growing Gmelina arborea trees. J Wood Sci 57(2):134–139. https://doi.org/10.1007/s10086-010-1149-7

    Article  CAS  Google Scholar 

  • Ãœlker O (2016) Wood adhesives and bonding theory. In: Rudawska A (ed) Adhesives: applications and properties. IntechOpen

    Google Scholar 

  • Wahab NHA, Tahir PM, Hoong YB, Ashaari Z, Mohd Yunus NY, Anwar Uyup MK, Shahri MH (2012) Adhesion characteristics of phenol formaldehyde pre-preg oil palm stem veneers. BioResources 7(4):4545–4562

    Google Scholar 

  • Wahab NHA, Tahir PM, Mohd Yunus NY, Ashaari Z, Yong ACC, Azowa Ibrahim N (2014) Influence of resin molecular weight on curing and thermal degradation of plywood made from phenolic prepreg palm veneers. J Adhesion 90(3):210–229.https://doi.org/10.1080/00218464.2013.780971

  • Wang BJ, Hei CY (2012) Performance evaluation of phenol formaldehyde resin-impregnated veneers and laminated veneer lumber. Wood Fiber Sci 44(1):5–13

    CAS  Google Scholar 

  • Wan H, Kim M (2006) Impregnation of southern pine wood and strands with low molecular weight phenol-formaldehyde resins for stabilization of oriented strandboard. Wood Fiber Sci 38(2):314–324

    CAS  Google Scholar 

  • Wei P, Wang BJ, Zhou D, Dai C, Wang Q, Huang S (2013) Mechanical properties of poplar laminated veneer lumber modified by carbon fiber reinforced polymer. BioResources 8(4):4883–4898

    Article  Google Scholar 

  • Wu Q, Lee S, Jones JP (2003) Decay and mold resistance of borate modified oriented strandboard. In: 34th annual conference for the international research group on wood preservation, proceedings of the May 18–23, 2003, pp 1–13

    Google Scholar 

  • Yang I, Kuo M, Myers DJ, Pu A (2006) Comparison of protein-based adhesive resins for wood composites. J Wood Sci 52(6):503–508. https://doi.org/10.1007/s10086-006-0804-5

    Article  CAS  Google Scholar 

  • Yapici F, Gunduz G, Ozcifci A (2010) The effects of some production factors on thermal conductivity oriented strand board. Technology 13(2):65–70

    Google Scholar 

  • Zhang R, Jin X, Wen X, Chen Q, Qin D (2018) Alumina nanoparticle modified phenol-formaldehyde resin as a wood adhesive. Int J Adhes Adhes 81:79–82. https://doi.org/10.1016/j.ijadhadh.2017.11.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ing Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kong, I. (2021). Wood-Based Phenolic Composites. In: Jawaid, M., Asim, M. (eds) Phenolic Polymers Based Composite Materials. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-15-8932-4_3

Download citation

Publish with us

Policies and ethics