Skip to main content

Implementing Proactive Building Asset Management Through Deterioration Prediction: A Case Study in Australia

  • Conference paper
  • First Online:
Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate (CRIOCM 2019)

Abstract

Buildings are critical assets in most owner’s asset packages. Maintaining and rehabilitating buildings under various constraints is a crucial challenge for most owners due to the complexity of building components and the uncertainty of their deteriorations. The Markov process based probabilistic approach is an effective solution to develop an asset deterioration prediction model helping owner implementing proactive building asset management. This paper takes one Australian city council as an example to discuss the benefits of an asset deterioration prediction model to the proactive building management and explain how to calibrate and validate the Markov transition matrices from the chronologic discrete assets condition datasets. Two identical findings are that curves derived from the short-period dataset are steeper than that from the long-period dataset, and C2, C3 curves derived from the short-period dataset are not significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marlow, D., Beale, D., & Burn, S. (2010). A pathway to a more sustainable water sector: Sustainability-based asset management. Water Science and Technology, 61, 1245–1255.

    Article  Google Scholar 

  2. Mohseni, H. (2012). Deterioration prediction of community buildings in Australia. Thesis.

    Google Scholar 

  3. Morcous, G., Rivard, H., & Hanna, A. (2002). Case-based reasoning system for modeling infrastructure deterioration. Journal of Computing in Civil Engineering, 16, 104–114.

    Article  Google Scholar 

  4. Robinson, R., Danielson, U., & Snaith, M. S. (1998). Road maintenance management: Concepts and systems, Macmillan International Higher Education.

    Google Scholar 

  5. Wirahadikusumah, R., Abraham, D., & Iseley, T. (2001). Challenging issues in modeling deterioration of combined sewers. Journal of Infrastructure Systems, 7, 77–84.

    Article  Google Scholar 

  6. Mubaraki, M. (2010). Predicting deterioration for the Saudi Arabia Urban road network. Thesis.

    Google Scholar 

  7. Hovde, P. J., & Moser, K. (2004). Performance based methods for service life prediction, State of the art reports, CIB Report: Publication. 294.

    Google Scholar 

  8. Lee, J., Guan, H., Blumenstein, M., & Loo, Y. (2011). Improving the reliability of a bridge deterioration model for a decision support system using artificial intelligence, Structural Health Monitoring in Australia. pp. 201–223.

    Google Scholar 

  9. Fogelman-Soulie, F., & Gallinari, P. (1998). Industrial applications of neural networks. World Scientific.

    Google Scholar 

  10. Tran, H. D. (2007). Investigation of deterioration models for stormwater pipe systems. Thesis.

    Google Scholar 

  11. Morcous, G., Rivard, H., & Hanna, A. (2002). Modeling bridge deterioration using case-based reasoning. Journal of Infrastructure Systems, 8, 86–95.

    Article  Google Scholar 

  12. Makropoulos, C., Butler, D., & Maksimovic, C. (2003). Fuzzy logic spatial decision support system for urban water management. Journal of Water Resources Planning and Management, 129, 69–77.

    Article  Google Scholar 

  13. Yan, J., & Vairavamoorthy, K. (2003). New pipeline technologies, security, and safety: Fuzzy approach for pipe condition assessment, pp. 466–476.

    Google Scholar 

  14. Najjaran, H., Sadiq, R., Rajani, B. (2004). Pipeline engineering and construction: What’s on the horizon? Modeling pipe deterioration using soil properties-an application of fuzzy logic expert system, pp. 1–10.

    Google Scholar 

  15. Vamvakeridou-Lyroudia, L., Walters, G., & Savic, D. (2005). Fuzzy multiobjective optimization of water distribution networks. Journal of Water Resources Planning and Management, 131, 467–476.

    Article  Google Scholar 

  16. Kleiner, Y., Sadiq, R., & Rajani, B. (2006). Modelling the deterioration of buried infrastructure as a fuzzy Markov process. Journal of Water Supply: Research and Technology-AQUA, 55, 67–80.

    Article  Google Scholar 

  17. Chao, L.-C., & Skibniewski, M. J. (1998). Fuzzy logic for evaluating alternative construction technology. Journal of Construction Engineering and Management, 124, 297–304.

    Article  Google Scholar 

  18. Liang, M.-T., Wu, J.-H., & Liang, C.-H. (2001). Multiple layer fuzzy evaluation for existing reinforced concrete bridges. Journal of Infrastructure Systems, 7, 144–159.

    Article  Google Scholar 

  19. Seo, S., Aramaki, T., Hwang, Y., & Hanaki, K. (2004). Fuzzy decision-making tool for environmental sustainable buildings. Journal of Construction Engineering and Management, 130, 415–423.

    Article  Google Scholar 

  20. Singh, D., & Tiong, R. L. (2005). A fuzzy decision framework for contractor selection. Journal of Construction Engineering and Management, 131, 62–70.

    Article  Google Scholar 

  21. Huang, Y. H. (2010). Artificial neural network model of bridge deterioration. Journal of Performance of Constructed Facilities, 24, 597–602.

    Article  Google Scholar 

  22. Lee, J., Guan, H., Loo, Y.-C., & Blumenstein, M. (2014). Development of a long-term bridge element performance model using Elman neural networks. Journal of infrastructure systems, 20, 04014013.

    Article  Google Scholar 

  23. Zangenehmadar, Z., & Moselhi, O. (2016). Assessment of remaining useful life of pipelines using different artificial neural networks models. Journal of Performance of Constructed Facilities. 30.

    Google Scholar 

  24. Chou, J. S., Ngo, N. T., & Chong, W. K. (2017). The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate. Engineering Applications of Artificial Intelligence, 65, 471–483.

    Article  Google Scholar 

  25. Ortiz-García, J. J., Costello, S. B., & Snaith, M. S. (2006). Derivation of transition probability matrices for pavement deterioration modeling. Journal of Transportation Engineering, 132, 141–161.

    Article  Google Scholar 

  26. Davies, J., Clarke, B., Whiter, J., Cunningham, R., & Leidi, A. (2001). The structural condition of rigid sewer pipes: A statistical investigation. Urban Water, 3, 277–286.

    Article  Google Scholar 

  27. Ariaratnam, S. T., El-Assaly, A., & Yang, Y. (2001). Assessment of infrastructure inspection needs using logistic models. Journal of Infrastructure Systems, 7, 160–165.

    Article  Google Scholar 

  28. Koo, D.-H., & Ariaratnam, S. T. (2006). Innovative method for assessment of underground sewer pipe condition. Automation in Construction, 15, 479–488.

    Article  Google Scholar 

  29. Madanat, S., Mishalani, R., & Ibrahim, W. H. W. (1995). Estimation of infrastructure transition probabilities from condition rating data. Journal of Infrastructure Systems, ASCE, 1, 120–125.

    Article  Google Scholar 

  30. Ross, S. M. (2010). Introduction to probability models. Academic Press.

    Google Scholar 

  31. Ranjith, S., Setunge, S., Gravina, R., & Venkatesan, S. (2013). Deterioration prediction of timber bridge elements using the Markov chain. Journal of Performance of Constructed Facilities, 27, 319–325.

    Article  Google Scholar 

  32. Micevski, T., Kuczera, G., & Coombes, P. (2002). Markov model for storm water pipe deterioration. Journal of Infrastructure Systems, 8, 49–56.

    Article  Google Scholar 

  33. Wellalage, N. K. W., Zhang, T., & Dwight, R. (2015). Calibrating Markov chain-based deterioration models for predicting future conditions of railway bridge elements. Journal of Bridge Engineering, ASCE, 20, 04014060.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Zhang .

Editor information

Editors and Affiliations

Appendix. Transition Matrices

Appendix. Transition Matrices

Internal Wall Transition Matrix Derived from 1-year Dataset

Pij

C 1

C 2

C 3

C 4

C5

C 1

0.9751

0.0053

0.0134

0.0051

0.0011

C 2

0

1.00E−04

0.0996

0.8985

0.0018

C 3

0

0

0.0323

0.9604

0.0073

C 4

0

0

0

0.9887

0.0113

C 5

0

0

0

0

1

Flooring_Cover_Carpet Transition Matrix Derived from 1-year Dataset

Pij

C 1

C 2

C 3

C 4

C5

C 1

0.9647

0.008

0.0209

0.0042

0.0022

C 2

0

1.00E−04

0.0712

0.9262

0.0025

C 3

0

0

0.0154

0.9783

0.0063

C 4

0

0

0

0.9585

0.0415

C 5

0

0

0

0

1

Ceiling Transition Matrix Derived from 1-year Dataset

Pij

C 1

C 2

C 3

C 4

C5

C 1

0.9616

0.0164

0.0121

0.0052

0.0047

C 2

0

1.35E−02

0.04

0.9416

0.0049

C 3

0

0

0.0182

0.9705

0.0113

C 4

0

0

0

0.9881

0.0119

C 5

0

0

0

0

1

Internal Wall Transition Matrix Derived from 5-year Dataset

Pij

C 1

C 2

C 3

C 4

C5

C 1

0.997

0.0006

0.0008

0.0008

0.0008

C 2

0

0.9972

0.001

0.0009

0.0009

C 3

0

0

0.998

0.0011

0.0009

C 4

0

0

0

0.9988

0.0012

C 5

0

0

0

0

1

Flooring_Cover_Carpet Transition Matrix Derived from 5-year Dataset

Pij

C 1

C 2

C 3

C 4

C5

C 1

0.9912

0.006

0.0007

0.0009

0.0012

C 2

0

0.997

0.0008

0.0009

0.0013

C 3

0

0

0.9978

0.0009

0.0013

C 4

0

0

0

0.9987

0.0013

C 5

0

0

0

0

1

Ceiling Transition Matrix Derived from 5-year Dataset

Pij

C 1

C 2

C 3

C 4

C5

C 1

0.9969

0.0007

0.0008

0.0007

0.0009

C 2

0

0.9951

0.0009

0.0028

0.0012

C 3

0

0

0.9958

0.0028

0.0014

C 4

0

0

0

0.9984

0.0016

C 5

0

0

0

0

1

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, W., Zhang, G., Tran, H.D., Setunge, S., Hou, L. (2021). Implementing Proactive Building Asset Management Through Deterioration Prediction: A Case Study in Australia. In: Ye, G., Yuan, H., Zuo, J. (eds) Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate. CRIOCM 2019. Springer, Singapore. https://doi.org/10.1007/978-981-15-8892-1_67

Download citation

Publish with us

Policies and ethics