Skip to main content

Electrospun Nanostructured Iron Oxide Carbon Composites for High-Performance Lithium Ion Batteries

  • Chapter
  • First Online:
Electrospinning for Advanced Energy Storage Applications

Abstract

The demand for the energy was upturned the development of energy storage devices that can effectively be utilized for the storage and supply of energy that generated from the green and sustainable energy sources. Among the different energy storage systems explored, lithium ion batteries (LIBs) play a significant role since it can offer better and best electrochemical properties. Fabrication of battery components is noteworthy in order to ensure enhanced battery performance. Anodes which serve as the positive electrode in LIBs play a major role, and currently, carbonaceous anodes are mostly used in LIBs. Even if they can deliver high electronic conductivity, low electrochemical potential and high safety than the lithium metal, the specific capacity exhibited by this material is observed to be low. In order to meet this major challenge in next-generation LIBs, transition metal oxide-based anodes are extensively studied because of their large reversible lithium storage properties. Iron oxide (Fe2O3 and Fe3O4) based anodes are one of the bests owing to their high theoretical capacity (1007 mAh g−1) which is attributed by the reversible conversion reaction that taking place between the lithium ion and metal oxides. Moreover, the environmental friendliness and low cost make it suitable anode in LIBs. However, the low electronic conductivity, large volume change during cycling that results in poor capacity retention and formation of unstable SEI are the serious concern with this anode material. One of the effective methods that used for resolving these issues is electrospinning which is considered as the most versatile technique for the fabrication of nanosized transition metal oxides. Fabrication of nanosized and nano-morphological structures as well as the structural modification can completely improvise the electrochemical performance of iron oxide-based anodes. The different aspects for the structural modification of iron oxide-based anodes and their electrochemical performance in LIBs will discuss in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santangelo S (2019) Electrospun nanomaterials for energy applications: recent advances. Appl Sci 9:1049. https://doi.org/10.3390/app9061049

    Article  Google Scholar 

  2. Manwell JF, McGowan JG (1993) Lead acid battery storage model for hybrid energy systems. Sol Energy 50:399–405. https://doi.org/10.1016/0038-092X(93)90060-2

    Article  Google Scholar 

  3. Sebastián R, Alzola RP (2010) Effective active power control of a high penetration wind diesel system with a Ni–Cd battery energy storage. Renew Energy 35:952–965. https://doi.org/10.1016/j.renene.2009.11.029

    Article  Google Scholar 

  4. Hammouche A, Karden E, De Doncker RW (2004) Monitoring state-of-charge of Ni-MH and Ni-Cd batteries using impedance spectroscopy. J Power Sources 127:105–111. https://doi.org/10.1016/j.jpowsour.2003.09.012

    Article  Google Scholar 

  5. Feng F (2001) Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int J Hydrogen Energy 26:725–734. https://doi.org/10.1016/S0360-3199(00)00127-0

    Article  Google Scholar 

  6. Yazami R, Touzain P (1983) A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sources 9:365–371. https://doi.org/10.1016/0378-7753(83)87040-2

    Article  Google Scholar 

  7. Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics 69:173–183. https://doi.org/10.1016/0167-2738(94)90408-1

    Article  Google Scholar 

  8. Wen Z, Lu G, Mao S et al (2013) Silicon nanotube anode for lithium-ion batteries. Electrochem Commun 29:67–70. https://doi.org/10.1016/j.elecom.2013.01.015

    Article  Google Scholar 

  9. Ma Z, Li T, Huang YL et al (2013) Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries. RSC Adv 3:7398–7402. https://doi.org/10.1039/c3ra41052h

    Article  Google Scholar 

  10. Song W, Nie Y, Sun S (2016) Author’ s accepted manuscript porous Fe2O3 nanotubes as advanced anode for high performance lithium ion batteries. Ceram Int. https://doi.org/10.1016/j.ceramint.2016.09.166

    Article  Google Scholar 

  11. Liu N, Shen J, Liu D (2013) A Fe2O3 nanoparticle carbon aerogel compsite for use as an electrode material for lithium ion batteries. Electrochim Acta 97:271–277. https://doi.org/10.1016/j.electacta.2013.02.111

  12. Xiong QQ, Lu Y, Wang XL, et al (2012) Improved electrochemical performance of porous Fe3O4/ carbon core/shell nanorods as an anode for lithium-ion batteries. 536:219–225. https://doi.org/10.1016/j.jallcom.2012.05.034

  13. Zhou G, Wang D, Li F, et al (2010) Graphene-Wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. 5306–5313. https://doi.org/10.1021/cm101532x

  14. Park SJ, Kim YJ, Lee H (2011) Synthesis of carbon-coated TiO2 nanotubes for high-power lithium-ion batteries. J Power Sources 196(11):5133–5137

    Google Scholar 

  15. Zhang Z, Zhou Z, Nie S, Wang H, Peng H, Li G, Chen K (2014) Flower-like hydrogenated TiO2 (B) nanostructures as anode materials for high-performance lithium ion batteries. J Power Sources 267:388–393

    Google Scholar 

  16. Dos Santos MC, Kesler O, Reddy ALM (2012) Nanomaterials for energy conversion and storage. J. Nanomater. 2012:2–4

    Google Scholar 

  17. Sun MH, Huang SZ, Chen LH et al (2016) Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem Soc Rev 45:3479–3563. https://doi.org/10.1039/c6cs00135a

    Article  Google Scholar 

  18. Osiak M, Geaney H, Armstrong E, O’Dwyer C (2014) Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. J Mater Chem A 2:9433–9460. https://doi.org/10.1039/c4ta00534a

    Article  Google Scholar 

  19. Wang Y, Li H, He P et al (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294–1305. https://doi.org/10.1039/c0nr00068j

    Article  Google Scholar 

  20. Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24. https://doi.org/10.1016/j.jpowsour.2010.07.020

    Article  Google Scholar 

  21. Kim Y, Song W, Lee SY et al (2011) Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Appl Phys Lett 98:1–4. https://doi.org/10.1063/1.3605560

    Article  Google Scholar 

  22. Fujimoto H, Tokumitsu K, Mabuchi A et al (2010) The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors. J Power Sources 195:7452–7456. https://doi.org/10.1016/j.jpowsour.2010.05.041

    Article  Google Scholar 

  23. Yang J, Zhou XY, Li J et al (2012) Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater Chem Phys 135:445–450. https://doi.org/10.1016/j.matchemphys.2012.05.006

    Article  Google Scholar 

  24. Bridges CA, Sun XG, Zhao J et al (2012) In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C 116:7701–7711. https://doi.org/10.1021/jp3012393

    Article  Google Scholar 

  25. Meunier V, Kephart J, Roland C, Bernholc J (2002) Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys Rev Lett 88:4. https://doi.org/10.1103/PhysRevLett.88.075506

    Article  Google Scholar 

  26. Schauerman CM, Ganter MJ, Gaustad G et al (2012) Recycling single-wall carbon nanotube anodes from lithium ion batteries. J Mater Chem 22:12008–12015. https://doi.org/10.1039/c2jm31971c

    Article  Google Scholar 

  27. Nishidate K, Hasegawa M (2005) Energetics of lithium ion adsorption on defective carbon nanotubes. Phys Rev B Condens Matter Mater Phys 71:1–6. https://doi.org/10.1103/PhysRevB.71.245418

    Article  Google Scholar 

  28. Zhao J, Buldum A, Han J, Lu JP (1999) First principles study of Li intercalated carbon nanotube ropes. Phys Rev Lett 85:1–12. https://doi.org/10.1103/PhysRevLett.85.1706

    Article  Google Scholar 

  29. Hou J, Shao Y, Ellis MW et al (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402. https://doi.org/10.1039/c1cp21915d

    Article  Google Scholar 

  30. Chen Z, Belharouak I, Sun YK, Amine K (2013) Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater 23:959–969. https://doi.org/10.1002/adfm.201200698

    Article  Google Scholar 

  31. Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72. https://doi.org/10.1039/C0EE00281J

    Article  Google Scholar 

  32. Rudawski NG, Yates BR, Holzworth MR et al (2013) Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries. J Power Sources 223:336–340. https://doi.org/10.1016/j.jpowsour.2012.09.056

    Article  Google Scholar 

  33. Chockla AM, Klavetter KC, Mullins CB, Korgel BA (2012) Solution-grown germanium nanowire anodes for lithium-ion batteries. ACS Appl Mater Interfaces 4:4658–4664. https://doi.org/10.1021/am3010253

    Article  Google Scholar 

  34. Bruce PG, Scrosati B, Tarascon J-M, Bruce PG (2008) Lithium batteries nanomaterials for rechargeable lithium batteries. Reviews 47:2930–2946. https://doi.org/10.1002/anie.200702505

    Article  Google Scholar 

  35. Park CM, Kim JH, Kim H, Sohn HJ (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141. https://doi.org/10.1039/b919877f

    Article  Google Scholar 

  36. Wang Z, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24:1903–1911. https://doi.org/10.1002/adma.201200469

    Article  Google Scholar 

  37. Yang J, Takeda Y, Imanishi N et al (2002) SiOx -based anodes for secondary lithium batteries. Solid State Ionics 152–153:125–129. https://doi.org/10.1016/S0167-2738(02)00362-4

    Article  Google Scholar 

  38. Jiang J, Li Y, Liu J et al (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180. https://doi.org/10.1002/adma.201202146

    Article  Google Scholar 

  39. Prosini PP, Carewska M, Loreti S et al (2000) Lithium iron oxide as alternative anode for Li-ion batteries. Int J Inorg Mater 2:365–370. https://doi.org/10.1016/S1466-6049(00)00028-3

    Article  Google Scholar 

  40. Lai CH, Lu MY, Chen LJ (2012) Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem 22:19–30. https://doi.org/10.1039/c1jm13879k

    Article  Google Scholar 

  41. Boyanov S, Annou K, Villevieille C et al (2008) Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries. Ionics (Kiel) 14:183–190. https://doi.org/10.1007/s11581-007-0170-3

    Article  Google Scholar 

  42. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2689. https://doi.org/10.1039/c0ee00699h

    Article  Google Scholar 

  43. Xu JS, Zhu YJ (2012) Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 4:4752–4757. https://doi.org/10.1021/am301123f

    Article  Google Scholar 

  44. Koo B, Xiong H, Slater MD et al (2012) Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett 12:2429–2435. https://doi.org/10.1021/nl3004286

    Article  Google Scholar 

  45. Liu J, Li Y, Fan H et al (2010) Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage. Chem Mater 22:212–217. https://doi.org/10.1021/cm903099w

    Article  Google Scholar 

  46. Kang N, Park JH, Choi J et al (2012) Nanoparticulate iron oxide tubes from microporous organic nanotubes as stable anode materials for lithium ion batteries. Angew Chemie - Int Ed 51:6626–6630. https://doi.org/10.1002/anie.201202244

    Article  Google Scholar 

  47. Ma XH, Feng XY, Song C et al (2013) Facile synthesis of flower-like and yarn-like α-Fe2O3 spherical clusters as anode materials for lithium-ion batteries. Electrochim Acta 93:131–136. https://doi.org/10.1016/j.electacta.2013.01.096

    Article  Google Scholar 

  48. Mitra S, Poizot P, Finke A, Tarascon JM (2006) Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made via electrodeposition. Adv Funct Mater 16:2281–2287. https://doi.org/10.1002/adfm.200500753

    Article  Google Scholar 

  49. Zhu X, Wu W, Liu Z et al (2013) A reduced graphene oxide-nanoporous magnetic oxide iron hybrid as an improved anode material for lithium ion batteries. Electrochim Acta 95:24–28. https://doi.org/10.1016/j.electacta.2013.02.029

    Article  Google Scholar 

  50. Hwang JK, Lim HS, Sun YK, Do SuhK (2013) Monodispersed hollow carbon/Fe3O4 composite microspheres for high performance anode materials in lithium-ion batteries. J Power Sources 244:538–543. https://doi.org/10.1016/j.jpowsour.2013.02.017

    Article  Google Scholar 

  51. Kim IT, Magasinski A, Jacob K et al (2013) Synthesis and electrochemical performance of reduced graphene oxide/maghemite composite anode for lithium ion batteries. Carbon N Y 52:56–64. https://doi.org/10.1016/j.carbon.2012.09.004

    Article  Google Scholar 

  52. Kim HS, Piao Y, Kang SH et al (2010) Uniform hematite nanocapsules based on an anode material for lithium ion batteries. Electrochem Commun 12:382–385. https://doi.org/10.1016/j.elecom.2009.12.040

    Article  Google Scholar 

  53. Liu H, Wexler D, Wang G (2009) One-pot facile synthesis of iron oxide nanowires as high capacity anode materials for lithium ion batteries. J Alloys Compd 487:24–27. https://doi.org/10.1016/j.jallcom.2009.08.043

    Article  Google Scholar 

  54. Muraliganth T, Vadivel Murugan A, Manthiram A (2009) Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem Commun 7360–7362. https://doi.org/10.1039/b916376j

    Google Scholar 

  55. Kang N, Park JH, Jin M et al (2013) Microporous organic network hollow spheres: useful templates for nanoparticulate Co3O4 hollow oxidation catalysts. J Am Chem Soc 135:19115–19118. https://doi.org/10.1021/ja411263h

    Article  Google Scholar 

  56. Wang B, Chen JS, Bin WuH et al (2011) Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc 133:17146–17148. https://doi.org/10.1021/ja208346s

    Article  Google Scholar 

  57. Xu X, Cao R, Jeong S, Cho J (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12:4988–4991. https://doi.org/10.1021/nl302618s

    Article  Google Scholar 

  58. Wu C, Yin P, Zhu X et al (2006) Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem B 110:17806–17812. https://doi.org/10.1021/jp0633906

    Article  Google Scholar 

  59. Sohn H, Chen Z, Jung YS et al (2013) Robust lithium-ion anodes based on nanocomposites of iron oxide-carbon-silicate. J Mater Chem A 1:4539–4545. https://doi.org/10.1039/c2ta00443g

    Article  Google Scholar 

  60. Raghavan P, Manuel J, Zhao X et al (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196:6742–6749. https://doi.org/10.1016/j.jpowsour.2010.10.089

    Article  Google Scholar 

  61. Lindsay MJ, Wang GX, Liu HK (2003) Al-based anode materials for Li-ion batteries. J Power Sources 119–121:84–87. https://doi.org/10.1016/S0378-7753(03)00130-7

    Article  Google Scholar 

  62. Fan J, Wang T, Yu C et al (2004) Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv Mater 16:1432–1436. https://doi.org/10.1002/adma.200400106

    Article  Google Scholar 

  63. Wang Y, Lee JY, Zeng HC (2005) Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem Mater 17:3899–3903. https://doi.org/10.1021/cm050724f

    Article  Google Scholar 

  64. Wang L, Yu Y, Chen PC, Chen CH (2008) Electrospun carbon-cobalt composite nanofiber as an anode material for lithium ion batteries. Scr Mater 58:405–408. https://doi.org/10.1016/j.scriptamat.2007.10.024

    Article  Google Scholar 

  65. Zhang X, Liu H, Petnikota S et al (2014) Electrospun Fe2O3-carbon composite nanofibers as durable anode materials for lithium ion batteries. J Mater Chem A 2:10835–10841. https://doi.org/10.1039/c3ta15123a

    Article  Google Scholar 

  66. Abe J, Kawase K, Tachikawa N et al (2017) Influence of carbonization temperature and press processing on the electrochemical characteristics of self-standing iron oxide/carbon composite electrospun nanofibers. RSC Adv 7:32812–32818. https://doi.org/10.1039/c7ra05301k

    Article  Google Scholar 

  67. Wu L, Xiao Q, Li Z et al (2012) CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance. Solid State Ionics 215:24–28. https://doi.org/10.1016/j.ssi.2012.03.044

    Article  Google Scholar 

  68. Wang L, Yu Y, Chen PC et al (2008) Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources 183:717–723. https://doi.org/10.1016/j.jpowsour.2008.05.079

    Article  Google Scholar 

  69. Wu Q, Zhao R, Zhang X et al (2017) Synthesis of flexible Fe3O4/C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries. J Power Sources 359:7–16. https://doi.org/10.1016/j.jpowsour.2017.05.020

    Article  Google Scholar 

  70. Xu X, Wan Y, Liu J et al (2017) Encapsulating iron oxide@carbon in carbon nanofibers as stable electric conductive network for lithium-ion batteries. Electrochim Acta 246:766–775. https://doi.org/10.1016/j.electacta.2017.06.078

    Article  Google Scholar 

  71. Zhu S, Chen M, Sun J et al (2016) Novel highly conductive ferroferric oxide/porous carbon nanofiber composites prepared by electrospinning as anode materials for high performance Li-ion batteries. RSC Adv 6:58529–58540. https://doi.org/10.1039/c6ra04090j

    Article  Google Scholar 

  72. Lang L, Xu Z (2013) In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries. ACS Appl Mater Interfaces 5:1698–1703. https://doi.org/10.1021/am302753p

    Article  Google Scholar 

  73. Hamideh Mortazavi S, Pilehvar S, Ghoranneviss M et al (2013) Plasma oxidation and stabilization of electrospun polyacrylonitrile nanofiber for carbon nanofiber formation. Appl Phys A Mater Sci Process 113:703–712. https://doi.org/10.1007/s00339-013-7707-2

    Article  Google Scholar 

  74. Larcher D, Bonnin D, Cortes R et al (2003) Combined XRD, EXAFS, and Mössbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes. J Electrochem Soc 150:1643–1650. https://doi.org/10.1149/1.1622959

    Article  Google Scholar 

  75. Verrelli R, Brescia R, Scarpellini A, Manna L, Scrosati B, Hassoun J (2014) A lithium ion battery exploiting a composite Fe2O3 anode and a high voltage Li 1.35 Ni 0.48 Fe 0.1 Mn 1.72 O 4 cathode. RSC Adv 4(106):61855–61862

    Google Scholar 

  76. Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:170–192. https://doi.org/10.1002/adma.201000717

    Article  Google Scholar 

  77. Lee JK, An KW, Ju JB et al (2001) Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries. Carbon N Y 39:1299–1305. https://doi.org/10.1016/S0008-6223(00)00237-2

    Article  Google Scholar 

  78. Poizot P, Laruelle S, Grugeon S, Tarascon JM (2002) Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J Electrochem Soc 149. https://doi.org/10.1149/1.1497981

    Google Scholar 

  79. Courtney IA, Dahn JR (1997) Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144:2045–2052. https://doi.org/10.1149/1.1837740

    Article  Google Scholar 

  80. Xue JS, Dahn JR (1995) Dramatic effect of oxidation on lithium insertion in carbons made from epoxy resins. J Electrochem Soc 142:3668–3677. https://doi.org/10.1149/1.2048397

    Article  Google Scholar 

  81. Kim C, Yang KS, Kim YJ, Endo M (2003) Heat treatment temperature effects on structural and electrochemical properties of PVDC-based disordered carbons. J Mater Sci 38:2987–2991. https://doi.org/10.1023/A:1024429828872

    Article  Google Scholar 

  82. Gnanaraj JS, Levi MD, Levi E, et al (2001) Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure. J Electrochem Soc 148. https://doi.org/10.1149/1.1368096

    Google Scholar 

  83. Yu Y, Shi Y, Chen CH (2007) Nanoporous cuprous oxide/lithia composite anode with capacity increasing characteristic and high rate capability. Nanotechnology 18. https://doi.org/10.1088/0957-4484/18/5/055706

  84. Yu Y, Shi Y, Chen CH, Wang C (2008) Facile electrochemical synthesis of single-crystalline copper nanospheres, pyramids, and truncated pyramidal nanoparticles. from lithia/cuprous oxide composite thin films. J Phys Chem C 112:4176–4179. https://doi.org/10.1021/jp800071h

    Article  Google Scholar 

  85. Zhang WD, Xiao HM, Zhu LP et al (2010) Facile one-step synthesis of electromagnetic functionalized polypyrrole/Fe3O4 nanotubes via a self-assembly process. J Polym Sci, Part A: Polym Chem 48:320–326. https://doi.org/10.1002/pola.23787

    Article  Google Scholar 

  86. Xie K, Lu Z, Huang H et al (2012) Iron supported C@Fe3O4 nanotube array: a new type of 3D anode with low-cost for high performance lithium-ion batteries. J Mater Chem 22:5560–5567. https://doi.org/10.1039/c2jm15955d

    Article  Google Scholar 

  87. Cheng Y, Zou B, Wang C et al (2011) Formation mechanism of Fe2O3 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic, electrochemical properties. CrystEngComm 13:2863–2870. https://doi.org/10.1039/c0ce00379d

    Article  Google Scholar 

  88. Chaudhari S, Srinivasan M (2012) 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J Mater Chem 22:23049–23056. https://doi.org/10.1039/c2jm32989a

    Article  Google Scholar 

  89. Im ME, Pham-Cong D, Kim JY et al (2015) Enhanced electrochemical performance of template-free carbon-coated iron(II, III) oxide hollow nanofibers as anode material for lithium-ion batteries. J Power Sources 284:392–399. https://doi.org/10.1016/j.jpowsour.2015.03.024

    Article  Google Scholar 

  90. Zhang Z, Li X, Wang C et al (2009) ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem C 113:19397–19403. https://doi.org/10.1021/jp9070373

    Article  Google Scholar 

  91. Morimoto H, Tobishima SI, Iizuka Y (2005) Lithium intercalation into α-Fe2O3 obtained by mechanical milling of α-FeOOH. J Power Sources 146:315–318. https://doi.org/10.1016/j.jpowsour.2005.03.036

    Article  Google Scholar 

  92. Hang BT, Doi T, Okada S, Yamaki J (2007) Effect of carbonaceous materials on electrochemical properties of nano-sized Fe2O3-loaded carbon as a lithium battery negative electrode. J Power Sources 174:493–500. https://doi.org/10.1016/j.jpowsour.2007.06.031

    Article  Google Scholar 

  93. Liu S, Zhang L, Zhou J et al (2008) Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers. Chem Mater 20:3623–3628. https://doi.org/10.1021/cm703623v

    Article  Google Scholar 

  94. Jamnik J, Maier J (2003) Nanocrystallinity effects in lithium battery materials: Aspects of nano-ionics. Part IV. Phys Chem Chem Phys 5:5215–5220. https://doi.org/10.1039/b309130a

    Article  Google Scholar 

  95. Song K, Lee Y, Jo MR, et al (2012) Comprehensive design of carbon-encapsulated Fe3O4 nanocrystals and their lithium storage properties. Nanotechnology 23. https://doi.org/10.1088/0957-4484/23/50/505401

    Google Scholar 

  96. He C, Wu S, Zhao N et al (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7:4459–4469. https://doi.org/10.1021/nn401059h

    Article  Google Scholar 

  97. Ma Y, Huang Y, Wang X, et al (2014) One-pot synthesis of Fe3O4/C nanocomposites by PEG-assisted co-precipitation as anode materials for high-rate lithium-ion batteries. J Nanopart Res 16. https://doi.org/10.1007/s11051-014-2614-9

    Google Scholar 

  98. Maier J (2010) Nanoionics: Ion transport and electrochemical storage in confined systems. Mater Sustain Energy A Collect Peer Rev Res Rev Artic from Nat Publ Group 4:160–170. https://doi.org/10.1142/9789814317665_0023

    Article  Google Scholar 

  99. Hu YS, Kienle L, Guo YG, Maier J (2006) High lithium electroactivity of nanometer-sized rutile TiO2. Adv Mater 18:1421–1426. https://doi.org/10.1002/adma.200502723

    Article  Google Scholar 

  100. Geim AK, Novoselov KS (2010) The rise of graphene. In nanoscience and technology: a collection of reviews from nature journals, pp 11–19

    Google Scholar 

  101. Geim AK (2009) Graphene: status and prospects. Prospects 324:1–8. https://doi.org/10.1126/science.1158877

    Article  Google Scholar 

  102. Zhu BY, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  Google Scholar 

  103. Blake P, Hill EW, Castro Neto AH, Novoselov KS, JiangD, Yang R, Geim AK (2007) Making graphene visible. Appl Phys Lett 91(6):063124

    Google Scholar 

  104. Novoselov KS, Morozov SV, Mohinddin TMG, Ponomarenko LA, Elias DC, Yang R, Giesbers J (2007) Electronic properties of graphene. Phys Status Solidi (B) 244(11):4106–4111

    Google Scholar 

  105. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone JE, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    Google Scholar 

  106. Morozov SV, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602. https://doi.org/10.1103/PhysRevLett.100.016602

    Article  Google Scholar 

  107. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80-) 321:385–388. https://doi.org/10.1126/science.1157996

  108. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  109. Cai W, Zhu Y, Li X et al (2009) Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl Phys Lett 95:2007–2010. https://doi.org/10.1063/1.3220807

    Article  Google Scholar 

  110. Ganguly S, Ghosh JJ (1979) Steroid hormone induced alterations in endometrium: I. Changes in lipid content, swelling pattern & lipid peroxidation of mitochondria. Indian J Biochem Biophys 16:61–65

    Google Scholar 

  111. Berger C, Wu X, Brown N, et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(80):1191–1196. https://doi.org/10.1126/science.1125925

  112. Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21:3324–3334. https://doi.org/10.1039/c0jm02126a

    Article  Google Scholar 

  113. Lv W, Tang DM, He YB et al (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3:3730–3736. https://doi.org/10.1021/nn900933u

    Article  Google Scholar 

  114. Yuan L, Ge J, Peng X et al (2016) A reliable way of mechanical exfoliation of large scale two dimensional materials with high quality. AIP Adv 6:125201. https://doi.org/10.1063/1.4967967

    Article  Google Scholar 

  115. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312. https://doi.org/10.1039/c3cs60303b

    Article  Google Scholar 

  116. Azizighannad S, Mitra S (2018) Stepwise reduction of Graphene Oxide (GO) and its effects on chemical and colloidal properties. Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-28353-6

    Article  Google Scholar 

  117. Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene‐based materials for energy storage applications. Small 10(17):3480–3498

    Google Scholar 

  118. Lee JK, Smith KB, Hayner CM, Kung HH (2010) Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem Commun 46:2025–2027. https://doi.org/10.1039/b919738a

    Article  Google Scholar 

  119. Wang G, Wang B, Wang X et al (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19:8378–8384. https://doi.org/10.1039/b914650d

    Article  Google Scholar 

  120. Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv Funct Mater 19:1497–1514. https://doi.org/10.1002/adfm.200801095

    Article  Google Scholar 

  121. Yang S, Feng X, Wang L et al (2010) Graphene-based nanosheets with a sandwich structure. Angew Chemie - Int Ed 49:4795–4799. https://doi.org/10.1002/anie.201001634

    Article  Google Scholar 

  122. Zhou G, Wang DW, Li F et al (2010) Graphene-wrapped Fe 3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313. https://doi.org/10.1021/cm101532x

    Article  Google Scholar 

  123. Baxter J, Bian Z, Chen G et al (2009) Nanoscale design to enable the revolution in renewable energy. Energy Environ Sci 2:559–588. https://doi.org/10.1039/b821698c

    Article  Google Scholar 

  124. Paek SM, Yoo EJ, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75. https://doi.org/10.1021/nl802484w

    Article  Google Scholar 

  125. Wang D, Choi D, Li J et al (2009) Self-assembled TiO2—graphene hybrid insertion. ACS Nano 3:907–914

    Article  Google Scholar 

  126. Kim HK, Bak SM, Kim KB (2010) Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries. Electrochem Commun 12:1768–1771. https://doi.org/10.1016/j.elecom.2010.10.018

    Article  Google Scholar 

  127. Wang B, Wu XL, Shu CY et al (2010) Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J Mater Chem 20:10661–10664. https://doi.org/10.1039/c0jm01941k

    Article  Google Scholar 

  128. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180. https://doi.org/10.1039/b923596e

    Article  Google Scholar 

  129. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157. https://doi.org/10.1039/c002690p

    Article  Google Scholar 

  130. Brownson DAC, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768–2778. https://doi.org/10.1039/c0an00590h

    Article  Google Scholar 

  131. Zhu X, Zhu Y, Murali S et al (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338. https://doi.org/10.1021/nn200493r

    Article  Google Scholar 

  132. Du M, Xu C, Sun J, Gao L (2012) One step synthesis of Fe2O3/nitrogen-doped graphene composite as anode materials for lithium ion batteries. Electrochim Acta 80:302–307. https://doi.org/10.1016/j.electacta.2012.07.029

    Article  Google Scholar 

  133. Jang B, Chae OB, Park SK et al (2013) Solventless synthesis of an iron-oxide/graphene nanocomposite and its application as an anode in high-rate Li-ion batteries. J Mater Chem A 1:15442–15446. https://doi.org/10.1039/c3ta13717a

    Article  Google Scholar 

  134. Kim DW, Bach LG, Hong SS et al (2014) A facile route towards the synthesis of Fe3O4/graphene oxide nanocomposites for environmental applications. Mol Cryst Liq Cryst 599:43–50. https://doi.org/10.1080/15421406.2014.935919

    Article  Google Scholar 

  135. Yoon T, Kim J, Kim J, Lee JK (2013) Electrostatic self-assembly of Fe3O4 nanoparticles on graphene oxides for high capacity lithium-ion battery anodes. Energies 6:4830–4840. https://doi.org/10.3390/en6094830

    Article  Google Scholar 

  136. Su J, Cao M, Ren L, Hu C (2011) Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J Phys Chem C 115:14469–14477. https://doi.org/10.1021/jp201666s

    Article  Google Scholar 

  137. Ji L, Tan Z, Kuykendall TR et al (2011) Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys Chem Chem Phys 13:7170–7177. https://doi.org/10.1039/c1cp20455f

    Article  Google Scholar 

  138. Liu J, Zhou Y, Liu F et al (2012) One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for Li-ion batteries. RSC Adv 2:2262–2265. https://doi.org/10.1039/c2ra01241c

    Article  Google Scholar 

  139. Chen D, Ji G, Ma Y et al (2011) Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl Mater Interfaces 3:3078–3083. https://doi.org/10.1021/am200592r

    Article  Google Scholar 

  140. Zhou Q, Zhao Z, Wang Z et al (2014) Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage. Nanoscale 6:2286–2291. https://doi.org/10.1039/c3nr05423c

    Article  Google Scholar 

  141. He J, Zhao S, Lian Y et al (2017) Graphene-doped carbon/Fe3O4 porous nanofibers with hierarchical band construction as high-performance anodes for lithium-ion batteries. Electrochim Acta 229:306–315. https://doi.org/10.1016/j.electacta.2017.01.092

    Article  Google Scholar 

  142. Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499. https://doi.org/10.1038/35035045

    Article  Google Scholar 

  143. Chen Y, Li X, Park K et al (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283. https://doi.org/10.1021/ja408421n

    Article  Google Scholar 

  144. Zhang B, Xu ZL, He YB et al (2014) Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst. Nano Energy 4:88–96. https://doi.org/10.1016/j.nanoen.2013.12.011

    Article  Google Scholar 

  145. Wang B, Zhang S, Wang G et al (2019) The morphology and electrochemical properties of porous Fe2O3@C and FeS@C nanofibers as stable and high-capacity anodes for lithium and sodium storage. J Colloid Interface Sci 557:216–226. https://doi.org/10.1016/j.jcis.2019.08.071

    Article  Google Scholar 

  146. Yang S, Cao C, Li G, Sun Y, Huang P, Wei F, Song W (2015) Improving the electrochemical performance of Fe3O4 nanoparticles via a double protection strategy through carbon nanotube decoration and graphene networks. Nano Res 8(4):1339–1347

    Google Scholar 

  147. Hsieh C, Lin J, Mo C (2011) Electrochimica Acta Improved storage capacity and rate capability of Fe3O4—graphene anodes for lithium-ion batteries. Electrochim Acta 58:119–124. https://doi.org/10.1016/j.electacta.2011.09.008

    Article  Google Scholar 

  148. Peng YT, Lo CT (2015) Electrospun porous carbon nanofibers as lithium ion battery anodes. J Solid State Electrochem 19:3401–3410. https://doi.org/10.1007/s10008-015-2976-7

    Article  Google Scholar 

  149. Zhao N, Wu S, He C et al (2013) One-pot synthesis of uniform Fe3O4 nanocrystals encapsulated in interconnected carbon nanospheres for superior lithium storage capability. Carbon N Y 57:130–138. https://doi.org/10.1016/j.carbon.2013.01.056

    Article  Google Scholar 

  150. Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586. https://doi.org/10.1002/adma.200401101

    Article  Google Scholar 

  151. Jannik J, Maier J (2004) Nanocrystallinity effects in lithium battery materials. Aspects of nano-ionics. J Phys Chem Solids 5:70569

    Google Scholar 

  152. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855–2861. https://doi.org/10.1002/adfm.200600997

    Article  Google Scholar 

  153. Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. In: Solid state sciences, pp 895–904

    Google Scholar 

  154. Laruelle S, Grugeon S, Poizot P et al (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:627–634. https://doi.org/10.1149/1.1467947

    Article  Google Scholar 

  155. Gu S, Liu Y, Zhang G et al (2014) Fe3O4/carbon composites obtained by electrospinning as an anode material with high rate capability for lithium ion batteries. RSC Adv 4:41179–41184. https://doi.org/10.1039/c4ra06888b

    Article  Google Scholar 

  156. Qin X, Zhang H, Wu J et al (2016) Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon N Y 87:347–356. https://doi.org/10.1016/j.carbon.2015.02.044

    Article  Google Scholar 

  157. Chen Z, Zhou J, Wang X et al (2016) Natural collagen fiber-enabled facile synthesis of carbon@Fe3O4 core-shell nanofiber bundles and their application as ultrahigh-rate anode materials for Li-ion batteries. RSC Adv 6:10824–10830. https://doi.org/10.1039/c5ra22481k

    Article  Google Scholar 

  158. Li S, Wang M, Luo Y, Huang J (2016) Bio-inspired hierarchical nanofibrous Fe3O4-TiO2-Carbon composite as a high-performance anode material for Lithium-Ion batteries. ACS Appl Mater Interfaces 8:17343–17351. https://doi.org/10.1021/acsami.6b05206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. J. Jabeen Fatima , Jou-Hyeon Ahn or Raghavan Prasanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balakrishnan, N.T.M. et al. (2021). Electrospun Nanostructured Iron Oxide Carbon Composites for High-Performance Lithium Ion Batteries. In: Balakrishnan, N.T.M., Prasanth, R. (eds) Electrospinning for Advanced Energy Storage Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-8844-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8844-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8843-3

  • Online ISBN: 978-981-15-8844-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics