Skip to main content

Electrospun Tin Based Composites as Anodes for Lithium-Ion Batteries

  • Chapter
  • First Online:
Electrospinning for Advanced Energy Storage Applications

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 697 Accesses

Abstract

Tin (Sn), as a potential lithium-ion batteries (LIBs) anode material, has acquired plentiful concern due to its low-cost, environmental benignity, high safety, and high theoretical capacity output (~994 mAh g−1 for Li22Sn5). Besides, some kinds of Sn-based compounds have also been researched for LIBs anodes, including nonmetallic compounds (such as SnO2, SnS, and SnSe) and intermetallic compounds (SnSb, CuSn, and CoSn). However, these Sn-based compounds anode materials are also difficult to release due electrochemical properties mainly blamed for huge volumetric expansion/contraction during Li+ insertion/extraction as well as consequent smash and aggregation. To avoid the above drawbacks, vast novel architectures from nanostructures to attached, core-shell, encapsulation, and porous structures based on electrospinning technique have been skillfully established to improve the electrochemical properties. In this chapter, the development to date about electrospinning Sn-based anode materials is discussed minutely by existent forms (simple substance or compound) of Sn and the outlook is also set forth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foster MS, Crouthamel CE, Wood SE (1966) Thermodynamics of binary alloys. II. The lithium—tin system1. J Phys Chem 70(10):3042–3045. https://doi.org/10.1021/j100882a004

  2. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276(5317):1395–1397. https://doi.org/10.1126/science.276.5317.1395

    Article  Google Scholar 

  3. http://www.bytecamera.com/content/view/372/2

  4. http://www.sony.net/SonyInfo/News/Press/200502/05-006E

  5. http://neasia.nikkeibp.com/neasiarrchivedtail/001100

  6. http://techon.nikkeibp.co.jp/english/NEWS_EN/20110720/193457/

  7. http://www.sony.com.cn/newscenter/techonology/118.htm

  8. Kim S, Choi JH, Lim DS, Lee JH, Kim ID (2014) Phase and microstructural evolution of Sn particles embedded in amorphous carbon nanofibers and their anode properties in Li-ion batteries. J Electroceram 32(4):261–268. https://doi.org/10.1007/s10832-014-9941-1

    Article  Google Scholar 

  9. Zheng J, Yu X, Wang C, Cao Z, Yang H, Ma D, Xu X (2016) Facile synthesis of three-dimensional reinforced Sn@polyaniline/sodium alginate nanofiber hydrogel network for high performance lithium-ion battery. J Mater Sci Mater Electron 27(5):4457–4464. https://doi.org/10.1007/s10854-016-4317-8

    Article  Google Scholar 

  10. Agubra VA, Zuniga L, Garza DDL, Gallegos L, Pokhrel M, Alcoutlabi M (2016) Forcespinning: a new method for the mass production of Sn/C composite nanofiber anodes for lithium ion batteries. Solid State Ionics 286:72–82. https://doi.org/10.1016/j.ssi.2015.12.020

  11. Wang Y, Aponte M, Leon N, Ramos I, Furlan R, Pinto N, Evoy S, Santiago-Aviles S (2005) Synthesis and characterization of ultra-fine tin oxide fibers using electrospinning. J Am Ceram Soc 88(8):2059–2063. https://doi.org/10.1111/j.1551-2916.2005.00409.x

    Article  Google Scholar 

  12. Luo L, Xu WZ, Xia ZK, Fei YQ, Zhu JD, Chen C, Lu Y, Wei QF, Qiao H, Electrospun Zhang X G (2015) ZnO–SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes. Ceram Int 42(9):10826–10832. https://doi.org/10.1016/j.ceramint.2016.03.211

    Article  Google Scholar 

  13. Lian QW, Zhou G, Zeng XH, Wu C, Wei YH, Cui C, Wei WF, Chen LB, Li CC (2016) Carbon Coated SnS/SnO2 heterostructures wrapping on CNFs as an improved-performance anode for Li-Ion batteries: lithiation-induced structural optimization upon cycling. ACS Appl Mater Interf 8(44):30256–30263. https://doi.org/10.1021/acsami.6b10391

    Article  Google Scholar 

  14. Hu YM, Yang QR, Ma JM, Chou SL, Zhu MY, Li Y (2015) Sn/SnO2@C composite nanofibers as advanced anode for lithium-ion batteries. Electrochim Acta 186:271–276. https://doi.org/10.1016/j.electacta.2015.10.185

    Article  Google Scholar 

  15. Narsimulu D, Vadnala S, Srinadhu ES, Satyanarayana N (2018) Electrospun Sn–SnO2/C composite nanofibers as an anode material for lithium battery applications. J Mater Sci Mater Electron 29(13):11117–11123. https://doi.org/10.1007/s10854-018-9195-9

    Article  Google Scholar 

  16. Kim JC, Kim DW (2014) Synthesis of multiphase SnSb nanoparticles-on-SnO2/Sn/C nanofibers for use in Li and Na ion battery electrodes. Electrochem Commun 46:124–127. https://doi.org/10.1016/j.elecom.2014.07.005

    Article  Google Scholar 

  17. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45(1–2):31–50. https://doi.org/10.1016/S0013-4686(99)00191-7

    Article  Google Scholar 

  18. Tirado JL (2003) Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Mater Sci Eng R Rep 40(3):103–136. https://doi.org/10.1016/S0927-796X(02)00125-0

  19. Zhu ZQ, Wang SW, Du J, Zhang TR, Cheng FY, Chen J (2013) Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano let. 14(1):153–157. https://doi.org/10.1021/nl403631h

    Article  Google Scholar 

  20. Wang YG, Li HQ, He P, Hosono E, Zhou HS (2010) Nano active materials for lithium-ion batteries. Nanoscale 2(8):1294–1305. https://doi.org/10.1039/C0NR00068J

    Article  Google Scholar 

  21. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887. https://doi.org/10.1002/adma.200800627

    Article  Google Scholar 

  22. Yu YH, Yang Q, Teng DH, Yang XP, Ryu S (2010) Reticular Sn nanoparticle-dispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries. Electrochem Commun 12(9):1187–1190. https://doi.org/10.1016/j.elecom.2010.06.015

    Article  Google Scholar 

  23. Wang HY, Gao P, Lu SF, Liu HD, Yang G, Pinto J, Jiang XF (2011) The effect of tin content to the morphology of Sn/carbon nanofiber and the electrochemical performance as anode material for lithium batteries. Electrochim Acta 58:44–51. https://doi.org/10.1016/j.electacta.2011.08.075

    Article  Google Scholar 

  24. Wang J, Song WL, Wang ZY, Fan LZ, Zhang YF (2015) Facile fabrication of binder-free metallic tin nanoparticle/carbon nanofiber hybrid electrodes for lithium-ion batteries. Electrochim Acta 153:468–475. https://doi.org/10.1016/j.electacta.2014.12.026

    Article  Google Scholar 

  25. Wang XL, Feygenson M, Aronson MC, Han WQ (2010) Sn/SnOx core−shell nanospheres: synthesis, anode performance in Li ion batteries, and superconductivity. J Phys Chem C 114(35):14697–14703. https://doi.org/10.1021/jp101852y

    Article  Google Scholar 

  26. Yu Y, Gu L, Wang CL, Dhanabalan A, Maier J (2009) Encapsulation of Sn@ carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48(35):6485–6489. https://doi.org/10.1002/anie.200901723

    Article  Google Scholar 

  27. Shen Z, Hu Y, Chen YL, Zhang XW, Wang KH, Chen RZ (2015) Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. J Power Sources 278:660–667. https://doi.org/10.1016/j.jpowsour.2014.12.106

    Article  Google Scholar 

  28. Yang ZX, Meng Q, Yan WH, Lv J, Guo ZP, Yu XB, Chen ZX, Guo TL, Zeng R (2015) Novel three-dimensional tin/carbon hybrid core/shell architecture with large amount of solid cross-linked micro/nanochannels for lithium ion battery application. Energy 82:960–967. https://doi.org/10.1016/j.energy.2015.01.105

    Article  Google Scholar 

  29. Zhang GH, Zhu J, Zeng W, Hou SC, Gong FL, Li F, Li CC, Duan HG (2014) Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy 9:61–70. https://doi.org/10.1016/j.nanoen.2014.06.030

    Article  Google Scholar 

  30. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu LX, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050. https://doi.org/10.1002/adma.201104634

    Article  Google Scholar 

  31. Ying H, Han WQ (2017) Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci 4(11):1700298. https://doi.org/10.1002/advs.201700298

    Article  Google Scholar 

  32. Wang H, Huang H, Chen L, Wang CG, Yan B, Yu YT, Yang Y, Yang G (2014) Preparation of Si/Sn-based nanoparticles composited with carbon fibers and improved electrochemical performance as anode materials. ACS Sustain Chem Eng 2(10):2310–2317. https://doi.org/10.1021/sc500290x

    Article  Google Scholar 

  33. Lou XW, Chen JS, Chen P, Archer LA (2009) One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem Mater 21(13):2868–2874. https://doi.org/10.1021/cm900613d

    Article  Google Scholar 

  34. Chen JS, Lou XW (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11):1877–1893. https://doi.org/10.1002/smll.201202601

    Article  Google Scholar 

  35. Larcher D, Beattie S, Morcrette M, Edstrom K, Jumas JC, Tarascon JM (2007) Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J Mater Chem 17(36):3759–3772. https://doi.org/10.1039/B705421C

    Article  Google Scholar 

  36. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan HY, Qi L, Kushima A, Li J (2010) In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010):1515–1520. https://doi.org/10.1126/science.1195628

  37. Fu Z, Li X, Xu G (2014) Novel electrospun SnO2@carbon nanofibers as high performance anodes for lithium-ion batteries. Cryst Res Technol 49(7):441–445. https://doi.org/10.1002/crat.201300211

    Article  Google Scholar 

  38. Bonino CA, Ji LW, Lin Z, Toprakci O, Khan SA (2011) Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. ACS Appl Mater Interfaces 3(7):2534–2542. https://doi.org/10.1021/am2004015

    Article  Google Scholar 

  39. Liu Y, Lan JL, Cai Q, Yu YH, Lin YH, Yang YP (2015) Encapsulating tin Dioxide@Porous carbon in carbon tubes: a fiber-in-tube hierarchical nanostructure for superior capacity and long-life lithium storage. Part Part Syst Charact 32(10):952–961. https://doi.org/10.1002/ppsc.201500073

    Article  Google Scholar 

  40. Xie WH, Gu LL, Xia FY, Hou XY, Wang Q, Liu DQ, He DY (2016) Fabrication of voids-involved SnO2@C nanofibers electrodes with highly reversible Sn/SnO2 conversion and much enhanced coulombic efficiency for lithium-ion batteries. J Power Sources 327:21–28. https://doi.org/10.1016/j.jpowsour.2016.07.030

    Article  Google Scholar 

  41. Ji LW, Lin Z, Guo BK, Medford AJ, Zhang XW (2010) Assembly of Carbon–SnO2 core-sheath composite nanofibers for superior lithium storage. Chem Eur J 16(38):11543–11548. https://doi.org/10.1002/chem.201001564

    Article  Google Scholar 

  42. Wang W, Liang YH, Kang YF, Liu LS, Xu ZW, Tian X, Mai W, Fu HJ, Lv HM, Teng KY, Jiao XN, Li FY (2019) Carbon-coated SnO2@carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries. Mater Chem Phys 223:762–770. https://doi.org/10.1016/j.matchemphys.2018.11.066

  43. Xia L, Wang SQ, Liu GX, Ding LX, Li DD, Wang HH, Qiao SZ (2016) Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7):853–859. https://doi.org/10.1002/smll.201503315

    Article  Google Scholar 

  44. Kim D, Lee D, Kim J, Moon J (2012) Electrospun Ni-added SnO2–carbon nanofiber composite anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 4(10):5408–5415. https://doi.org/10.1021/am301328u

    Article  Google Scholar 

  45. Tran T, McCormac K, Li JL, Bi ZG, Wu J (2014) Electrospun SnO2 and TiO2 composite nanofibers for lithium ion batteries. Electrochim Acta 117:68–75. https://doi.org/10.1016/j.electacta.2013.11.101

    Article  Google Scholar 

  46. Zhao Y, Li X, Dong L, Yan B, Shan H, Li DJ, Sun XL (2015) Electrospun SnO2–ZnO nanofibers with improved electrochemical performance as anode materials for lithium-ion batteries. Int J Hydrog Energy 40(41):14338–14344. https://doi.org/10.1016/j.ijhydene.2015.06.054

    Article  Google Scholar 

  47. Xie WH, Li SY, Wang SY, Xue S, Liu ZJ, Jiang XY, He DY (2014) N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers as a binder-free self-supported electrode for lithium ion batteries. ACS Appl Mater Interfaces 6(22):20334–20339. https://doi.org/10.1021/am505829v

    Article  Google Scholar 

  48. Qiao L, Wang XH, Qiao L, Sun XW, Li XW, Zheng YX, He DY (2013) Single electrospun porous NiO–ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries. Nanoscale 5(7):3037–3042. https://doi.org/10.1039/C3NR34103H

    Article  Google Scholar 

  49. Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8(4):320–324. https://doi.org/10.1038/nmat2418

    Article  Google Scholar 

  50. Liu Y, Yan X, Lan JL, Teng DH, Yu YH, Yang XP (2014) Ti-doped SnOx encapsulated in Carbon nanofibers with enhanced lithium storage properties. Electrochim Acta 137:9–16. https://doi.org/10.1016/j.electacta.2014.05.052

    Article  Google Scholar 

  51. Liu XW, Teng DH, Li T, Yu YH, Shao XH, Yang XP (2014) Phosphorus-doped tin oxides/carbon nanofibers webs as lithium-ion battery anodes with enhanced reversible capacity. J Power Sources 272:614–621. https://doi.org/10.1016/j.jpowsour.2014.08.084

    Article  Google Scholar 

  52. Chi C, Lan JL, Sun JM, Liu Y, Yu YH, Yang XP (2015) Amorphous Cu-added/SnOx/CNFs composite webs as anode materials with superior lithium-ion storage capability. RSC Adv. 5(51):41210–41217. https://doi.org/10.1039/C5RA03658E

    Article  Google Scholar 

  53. Li Q, Lan JL, Liu Y, Yu YH, Yang XP (2015) Carbon nanofiber-supported B2O3–SnOx glasses as anode materials for high-performance lithium-ion batteries. RSC Adv. 5(108):89099–89104. https://doi.org/10.1039/C5RA19387G

    Article  Google Scholar 

  54. Liu Y, Yan XD, Yu YH, Yang XP (2016) Eco-friendly fabricated porous carbon nanofibers decorated with nanosized SnOx as high-performance lithium-ion battery anodes. ACS Sustain Chem Eng 4(6):2951–2959. https://doi.org/10.1021/acssuschemeng.5b01236

    Article  Google Scholar 

  55. Liu Y, Yan XD, Lan JL, Yu YH, Yang XP, Lin YH (2017) Phase-separation induced hollow/porous carbon nanofibers containing in situ generated ultrafine SnOx as anode materials for lithium-ion batteries. Mater Chem Front 1(7):1331–1337. https://doi.org/10.1039/C6QM00377J

    Article  Google Scholar 

  56. Jung HR, Lee WJ (2011) Electrochemical characterization of electrospun SnOx-embedded carbon nanofibers anode for lithium ion battery with EXAFS analysis. J Electroanal Chem 662(2):334–342. https://doi.org/10.1016/j.jelechem.2011.09.006

    Article  Google Scholar 

  57. Zhou XS, Dai ZH, Liu SH, Bao JC, Guo YG (2014) Ultra-Uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Adv Mater 26(23):3943–3949. https://doi.org/10.1002/adma.201400173

    Article  Google Scholar 

  58. Joshi BN, An S, Jo HS, Song KY, Park HG, Hwang SW, Al-Deyab SS, Yoon WY, Yoon SS (2016) Flexible, freestanding, and binder-free SnOx–ZnO/carbon nanofiber composites for lithium ion battery anodes. ACS Appl Mater Interfaces 8(14):9446–9453. https://doi.org/10.1021/acsami.6b01093

    Article  Google Scholar 

  59. Xiong XH, Yang CH, Wang GH, Lin YW, Qu X, Wang JH, Zhao BT, Liu ML, Lin Z, Huang K (2017) SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ Sci 10(8):1757–1763. https://doi.org/10.1039/C7EE01628J

    Article  Google Scholar 

  60. Wei ZX, Wang L, Zhuo M, Ni W, Wang HX, Ma JM (2018) Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A 6(26):12185–12214. https://doi.org/10.1039/C8TA02695E

    Article  Google Scholar 

  61. Lee DH, Park CM (2017) Tin selenides with layered crystal structures for Li-Ion batteries: interesting phase change mechanisms and outstanding electrochemical behaviors. ACS Appl Mater Interfaces 9(18):15439–15448. https://doi.org/10.1021/acsami.7b01829

    Article  Google Scholar 

  62. Wang W, Li PH, Zheng H, Liu Q, Lv F, Wu JD, Wang S, Guo SJ (2017) Ultrathin layered SnSe nanoplates for low voltage, high-rate, and long-life Alkali-Ion batteries. Small 13(46):1702228. https://doi.org/10.1002/smll.201702228

    Article  Google Scholar 

  63. Xia J, Liu L, Jamil S, Xie JJ, Yan HX, Yuan YT, Zhang Y, Nie S, Pan J, Wang XY, Cao GZ (2019) Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 17:1–11. https://doi.org/10.1016/j.ensm.2018.08.005

    Article  Google Scholar 

  64. Zhang L, Lu L, Zhang DC, Hu WT, Wang N, Xu B, Li YM, Zeng H (2016) Dual-buffered SnSe@CNFs as negative electrode with outstanding lithium storage performance. Electrochim Acta 209:423–429. https://doi.org/10.1016/j.electacta.2016.05.106

    Article  Google Scholar 

  65. Yuan HC, Jin YQ, Lan JL, Liu Y, Yu YH, Yang XP (2018) In situ synthesized SnSe nanorods in a SnOx@CNF membrane toward high-performance freestanding and binder-free lithium-ion batteries. Inorg. Chem. Front. 5(4):932–938. https://doi.org/10.1039/C7QI00762K

    Article  Google Scholar 

  66. Naille S, Dedryvere R, Martinez H, Leroy S, Lippens PE, Jumas JC, Gonbeau D (2007) XPS study of electrode/electrolyte interfaces of η-Cu6Sn5 electrodes in Li-ion batteries. J Power Sources 174(2):1086–1090. https://doi.org/10.1016/j.jpowsour.2007.06.043

    Article  Google Scholar 

  67. Hu RZ, Zhang Y, Zhu M (2008) Microstructure and electrochemical properties of electron-beam deposited Sn–Cu thin film anodes for thin film lithium ion batteries. Electrochim Acta 53(8):3377–3385. https://doi.org/10.1016/j.electacta.2007.11.064

    Article  Google Scholar 

  68. Hassoun J, Derrien G, Panero S, Scrosati B (2009) A SnSb–C nanocomposite as high performance electrode for lithium ion batteries. Electrochim Acta 54(19):4441–4444. https://doi.org/10.1016/j.electacta.2009.03.027

    Article  Google Scholar 

  69. Shiva K, Rajendra HB, Bhattacharyya AJ (2015) Electrospun SnSb crystalline nanoparticles inside porous carbon fibers as a high stability and rate capability anode for rechargeable batteries. ChemPlusChem 80(3):516–521. https://doi.org/10.1002/cplu.201402291

    Article  Google Scholar 

  70. Niu X, Zhou HM, Li ZY, Shan XH, Xia X (2015) Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes. J Alloy Compd 620:308–314. https://doi.org/10.1016/j.jallcom.2014.09.150

    Article  Google Scholar 

  71. Xia X, Li ZY, Xue LG, Qiu YP, Zhang CY, Zhang XW (2017) The electrochemical performance of SnSb/C nanofibers with different morphologies and underlying mechanism. J Mater Res 32(6):1184–1193. https://doi.org/10.1557/jmr.2016.508

    Article  Google Scholar 

  72. Yuan ZX, Dong LX, Gao QL, Huang ZG, Wang LW, Wang GF, Yu XB (2019) SnSb alloy nanoparticles embedded in N-doped porous carbon nanofibers as a high-capacity anode material for lithium-ion batteries. J Alloy Compd 777:775–783. https://doi.org/10.1016/j.jallcom.2018.10.295

    Article  Google Scholar 

  73. Xue LJ, Xu YF, Huang L, Ke FS, He Y, Wang YX, Wei GZ, Li JT, Sun SG (2011) Lithium storage performance and interfacial processes of three dimensional porous Sn–Co alloy electrodes for lithium-ion batteries. Electrochim Acta 56(17):5979–5987. https://doi.org/10.1016/j.electacta.2011.04.103

    Article  Google Scholar 

  74. Jang BO, Park SH, Lee WJ (2013) Electrospun Co–Sn alloy/carbon nanofibers composite anode for lithium ion batteries. J Alloy Compd 574:325–330. https://doi.org/10.1016/j.jallcom.2013.05.063

    Article  Google Scholar 

  75. Barakat NAM, Amen MT, Al-Mubaddel FS, Karim MR, Alrashed M (2019) NiSn nanoparticle-incorporated carbon nanofibers as efficient electrocatalysts for urea oxidation and working anodes in direct urea fuel cells. J Adv Res 16:43–53. https://doi.org/10.1016/j.jare.2018.12.003

    Article  Google Scholar 

  76. Milanova V, Atanasova S, Avdeev G, Markova I (2017) Morphology of intermetallic (Co–Sn, Ni–Sn) nanoparticles, electrochemicaly tested as electrodes in li-ion battery. J Chem Technol Metal 52(3):542–556. https://doi.org/10.1515/rams-2018-0031

    Article  Google Scholar 

  77. Arbizzani C, Beninati S, Lazzari M, Mastragostino M (2006) On the lithiation–delithiation of tin and tin-based intermetallic compounds on carbon paper current collector-substrate. J Power Sources 158(1):635–640. https://doi.org/10.1016/j.jpowsour.2005.06.042

    Article  Google Scholar 

  78. Cho YJ, Kim CH, Im HS, Myung Y, Kim HS, Back SH, Lim YR, Jung CS, Jang DM, Park J, Lim SH, Cha EH, Bae KY, Song MS, Cho Wl (2013) Germanium–tin alloy nanocrystals for high-performance lithium ion batteries. Phys Chem Chem Phys PCCP 15(28):11691–11695. https://doi.org/10.1039/C3CP51366A

  79. Lee H, Cho J (2007) Sn78Ge22@ carbon core—shell nanowires as fast and high-capacity lithium storage media. Nano Lett 7(9):2638–2641. https://doi.org/10.1021/nl071022n

    Article  Google Scholar 

  80. Mao O, Dunlap R A, Dahn J R (1999) Mechanically alloyed Sn–Fe (–C) powders as anode materials for Li‐Ion batteries: I. the Sn2Fe‐C system. J Electrochem Soc 146(2):405–413. https://doi.org/10.1149/1.1391622

  81. Zhao MM, Zhao QX, Qiu JQ, Xue HG, Pang H (2016) Tin-based nanomaterials for electrochemical energy storage. RSC Adv 6(98):95449–95468. https://doi.org/10.1039/C6RA19877E

    Article  Google Scholar 

  82. Xue LG, Xia X, Tucker T, Kun F, Zhang S, Zhang XW (2013) A simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability. J Mater Chem A 1(44):13807–13813. https://doi.org/10.1039/C3TA12921G

    Article  Google Scholar 

  83. Lu WL, Luo CH, Li Y, Feng YY, Zhao YY, Yuan XY (2013) CoSn/carbon composite nanofibers for applications as anode in lithium-ion batteries. J Nanopart Res 15(9):1736. https://doi.org/10.1007/s11051-013-1736-9

    Article  Google Scholar 

  84. Shen Z, Hu Y, Chen RZ, He X, Chen YL, Shao HF, Zhang XW, Wu KS (2017) Split Sn–Cu alloys on carbon nanofibers by one-step heat treatment for long-lifespan lithium-ion batteries. Electrochim Acta 225:350–357. https://doi.org/10.1016/j.electacta.2016.12.143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhua Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kong, N., Yu, Y., Yang, X. (2021). Electrospun Tin Based Composites as Anodes for Lithium-Ion Batteries. In: Balakrishnan, N.T.M., Prasanth, R. (eds) Electrospinning for Advanced Energy Storage Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-8844-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8844-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8843-3

  • Online ISBN: 978-981-15-8844-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics