Skip to main content

Abstract

The past two decades has seen a great amount of research being done in the area of “Data Mining”. “Frequent Itemset Mining” is one application of “Data Mining” used to mine “Frequent Patterns” from databases. Itemsets that occur frequently only extract patterns that are frequent. This type of mining has its disadvantage. Items that are frequent may or may not be profitable to an organization. For this type of disadvantage to be overcome “High Utility Itemset Mining” had been introduced. It is used to mine profitable patterns from databases. This can help organizations to market profitable patterns. “High Utility Itemset Mining” also has its own disadvantage, because while mining itemsets, the lengths of the itemsets are not taken into consideration. The bigger the length of the itemset the more the profit. This does not give a real representation of the value or profit of the itemset. To get over this problem “High Average Utility Itemset Mining” had been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen M-S et al (1996) Data mining: an overview from a database perspective. IEEE Trans Knowl Data Eng 8(6):866–883. https://doi.org/10.1109/69.553155

    Article  Google Scholar 

  2. Data mining: concepts and techniques, 3rd edn. DATA Min. 560

    Google Scholar 

  3. Agrawal R et al (1993) Mining association rules between sets of items in large databases. In: Acm sigmod record, pp 207–216. ACM

    Google Scholar 

  4. Barber B, Hamilton HJ (2000) Algorithms for mining share frequent itemsets containing infrequent subsets. In: European conference on principles of data mining and knowledge discovery, pp 316–324. Springer

    Google Scholar 

  5. Barber B, Hamilton HJ (2003) Extracting share frequent itemsets with infrequent subsets. Data Min Knowl Discov 7(2):153–185

    Article  MathSciNet  Google Scholar 

  6. Berzal F et al (2001) TBAR: an efficient method for association rule mining in relational databases. Data Knowl Eng 37(1):47–64. https://doi.org/10.1016/S0169-023X(00)00055-0

    Article  MATH  Google Scholar 

  7. Chang C-C, Lin C-Y (2005) Perfect hashing schemes for mining association rules. Comput J 48(2):168–179. https://doi.org/10.1093/comjnl/bxh074

    Article  Google Scholar 

  8. Erwin A et al (2008) Efficient mining of high utility itemsets from large datasets. In: Pacific-Asia conference on knowledge discovery and data mining, pp 554–561. Springer

    Google Scholar 

  9. Dynamic itemset counting and implication rules for market basket data. https://dl.acm.org/citation.cfm?id=253325. Last accessed 23 December 2019

  10. Hong T-P et al (2011) Effective utility mining with the measure of average utility. Expert Syst App 38(7):8259–8265

    Article  Google Scholar 

  11. Raymond Chan et al (2003) Mining high utility itemsets. In: Third IEEE international conference on data mining, pp. 19–26. https://doi.org/10.1109/ICDM.2003.1250893

  12. Yao H et al (2006) A unified framework for utility-based measures for mining itemsets. In: Proceedings of ACM SIGKDD 2nd workshop on utility-based data mining. Citeseer, pp 28–37

    Google Scholar 

  13. Yi-Dong Shen et al (2002) Objective-oriented utility-based association mining. In: Proceedings of 2002 IEEE international conference on data mining, 2002. pp 426–433. https://doi.org/10.1109/ICDM.2002.1183938

  14. Ahmed CF et al (2009) Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans Knowl Data Eng 21(12):1708–1721

    Article  Google Scholar 

  15. Shie BE et al (2010) Online mining of temporal maximal utility itemsets from data streams. In: Proceedings of the 2010 ACM symposium on applied computing. ACM, pp 1622–1626

    Google Scholar 

  16. Li Y-C et al (2005) Direct candidates generation: a novel algorithm for discovering complete share-frequent itemsets. In: International conference on fuzzy systems and knowledge discovery. Springer, pp 551–560

    Google Scholar 

  17. Li Y-C et al (2008) Isolated items discarding strategy for discovering high utility itemsets. Data Knowl Eng 64(1):198–217

    Article  Google Scholar 

  18. Yao H, Hamilton HJ (2006) Mining itemset utilities from transaction databases. Data Knowl Eng 59(3):603–626

    Article  Google Scholar 

  19. Hong T-P et al (2008) Incrementally fast updated frequent pattern trees. Expert Syst Appl 34(4):2424–2435

    Article  Google Scholar 

  20. Lee D et al (2013) Utility-based association rule mining: a marketing solution for cross-selling. Expert Syst Appl 40(7):2715–2725

    Article  Google Scholar 

  21. Ahmed CF et al (2010) A novel approach for mining high-utility sequential patterns in sequence databases. ETRI J 32(5):676–686

    Article  Google Scholar 

  22. Yin J et al (2012) USpan: an efficient algorithm for mining high utility sequential patterns. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 660–668

    Google Scholar 

  23. Lin Y-F et al (2015) Discovering utility-based episode rules in complex event sequences. Expert Syst Appl 42(12):5303–5314

    Article  Google Scholar 

  24. Wu C-W et al (2013) Mining high utility episodes in complex event sequences. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 536–544

    Google Scholar 

  25. Lin JC-W et al (2016) An efficient algorithm to mine high average-utility itemsets. Adv Eng Inform 30(2):233–243

    Article  Google Scholar 

  26. Lin JC-W et al (2017) EHAUPM: efficient high average-utility pattern mining with tighter upper bounds. IEEE Access 5:12927–12940. https://doi.org/10.1109/ACCESS.2017.2717438

    Article  Google Scholar 

  27. Han J et al (2004) Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min Knowl Discov 8(1):53–87. https://doi.org/10.1023/B:DAMI.0000005258.31418.83

    Article  MathSciNet  Google Scholar 

  28. Peng AY et al (2017) mHUIMiner: a fast high utility itemset mining algorithm for sparse datasets. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 196–207

    Google Scholar 

  29. Lan G-C et al (2012) A projection-based approach for discovering high average-utility itemsets. J Inf Sci Eng 28(1):193–209

    Google Scholar 

  30. Lan G-C et al (2012) Efficiently mining high average-utility itemsets with an improved upper-bound strategy. Int J Inf Technol Decis Mak 11(05):1009–1030

    Article  Google Scholar 

  31. Lu T et al (2015) A new method for mining high average utility itemsets. In: IFIP international conference on computer information systems and industrial management. Springer, pp 33–42

    Google Scholar 

  32. Lin JC-W et al (2016) Efficient mining of high-utility itemsets using multiple minimum utility thresholds. Knowl-Based Syst 113, 100–115 (2016). https://doi.org/10.1016/j.knosys.2016.09.013

  33. A fast algorithm for mining high average-utility itemsets. SpringerLink. https://doi.org/10.1007/s10489-017-0896-1. Last accessed 23 December 2019

  34. Efficient algorithm for mining high average-utility itemsets in incremental transaction databases SpringerLink. https://link.springer.com/article/10.1007/s10489-016-0890-z. Last accessed 23 December 2019

  35. Yun U et al (2018) Damped window based high average utility pattern mining over data streams. Knowl-Based Syst 144, 188–205 (2018). https://doi.org/10.1016/j.knosys.2017.12.029

  36. Yun U, Ryang H (2015) Incremental high utility pattern mining with static and dynamic databases. Appl Intell 42(2):323–352

    Article  Google Scholar 

  37. Yun U, Kim D (2017) Mining of high average-utility itemsets using novel list structure and pruning strategy. Future Gener Comput Syst 68:346–360. https://doi.org/10.1016/j.future.2016.10.027

    Article  Google Scholar 

  38. Maintenance algorithm for high average-utility itemsets with transaction deletion. SpringerLink. https://link.springer.com/article/10.1007/s10489-018-1180-8. Last accessed 23 December 2019

  39. Maintenance of discovered association rules in large databases: an incremental updating technique. IEEE Conference Publication. https://ieeexplore.ieee.org/abstract/document/49209. Last accessed 23 December 2019

  40. Zhang B et al (2018) Maintenance of discovered high average-utility itemsets in dynamic databases. Appl Sci 8(5), 769 (2018). https://doi.org/10.3390/app8050769

  41. MEMU: More Efficient Algorithm to Mine High Average-Utility patterns with multiple minimum average-utility thresholds. IEEE J Mag. https://ieeexplore.ieee.org/abstract/document/8279384. Last accessed 23 December 2019

  42. Lin JC-W et al (2018) Efficiently updating the discovered high average-utility itemsets with transaction insertion. Eng Appl Artif Intell 72:136–149. https://doi.org/10.1016/j.engappai.2018.03.021

    Article  Google Scholar 

  43. TUB-HAUPM: tighter upper bound for mining high average-utility patterns. IEEE J Mag. https://ieeexplore.ieee.org/abstract/document/8329566. Last accessed 23 December 2019

  44. Top-k high average-utility itemsets mining with effective pruning strategies | SpringerLink. https://link.springer.com/article/10.1007/s10489-018-1155-9. Last accessed 23 December 2019

  45. Efficient vertical mining of high average-utility itemsets based on novel upper-bounds. IEEE J Mag. https://ieeexplore.ieee.org/abstract/document/8355591. Last accessed 23 December 2019

  46. An efficient tree-based algorithm for mining high average-utility itemset. IEEE J Mag https://ieeexplore.ieee.org/abstract/document/8861288. Last accessed 23 December 2019

  47. Truong T et al (2019) Efficient high average-utility itemset mining using novel vertical weak upper-bounds. Knowl-Based Syst 183, 104847 (2019). https://doi.org/10.1016/j.knosys.2019.07.018

  48. Liu Y et al (2005) A two-phase algorithm for fast discovery of high utility itemsets. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 689–695

    Google Scholar 

  49. Ahmed CF et al (2011) HUC-Prune: an efficient candidate pruning technique to mine high utility patterns. Appl Intell 34(2):181–198

    Article  Google Scholar 

  50. Fournier-Viger P et al (2014) FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen T et al (eds) Foundations of intelligent systems. Springer International Publishing, Cham, pp 83–92

    Google Scholar 

  51. Yun U et al (2014) High utility itemset mining with techniques for reducing overestimated utilities and pruning candidates. Expert Syst Appl 41(8):3861–3878

    Article  Google Scholar 

  52. Tseng VS et al (2012) Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans Knowl Data Eng 25(8):1772–1786

    Article  Google Scholar 

  53. an incremental mining algorithm for high average-utility itemsets. IEEE Conference Publication. https://ieeexplore.ieee.org/abstract/document/5381569. Last accessed 23 December 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathe John Kenny Kumar .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kenny Kumar, M.J., Rana, D. (2021). High Average Utility Itemset Mining: A Survey. In: Chaki, N., Pejas, J., Devarakonda, N., Rao Kovvur, R.M. (eds) Proceedings of International Conference on Computational Intelligence and Data Engineering. Lecture Notes on Data Engineering and Communications Technologies, vol 56. Springer, Singapore. https://doi.org/10.1007/978-981-15-8767-2_30

Download citation

Publish with us

Policies and ethics