Skip to main content

Application of Optogenetics in Epilepsy Research

  • Chapter
  • First Online:
Optogenetics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1293))

Abstract

Epilepsy is a disease characterized by seizures arising from paroxysmal and self-limited hypersynchrony of neurons. However, the mechanism by which the normal brain develops epilepsy, which involves a chronic process of structural and morphological changes known as epileptogenesis, is not fully understood. Optogenetics involves the use of genetic engineering and optics to monitor or control nerve cell activity. Compared to classical electrophysiological experiments, the application of optogenetics in epilepsy research has many advantages because it allows selective photic stimulation of cell types and electrical observation without introducing artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEDs:

Antiepileptic drugs

DBS:

Deep brain stimulation

GABA:

Gamma-aminobutyric acid

VNS:

Vagus nerve stimulation

References

  • Berglind F, Ledri M, Sorensen AT et al (2014) Optogenetic inhibition of chemically induced hypersynchronized bursting in mice. Neurobiol Dis 65:133–141

    Article  CAS  PubMed  Google Scholar 

  • Brodie M, Elder AT, Kwan P (2009) Epilepsy in later life. Lancet Neurol 8:1019–1030

    Article  PubMed  Google Scholar 

  • Chang BS, Lowenstein DH (2003) Epilepsy. New Engl J Med 349:1257–1266

    Article  PubMed  Google Scholar 

  • Chauvette S, Soltani S, Seigneur J et al (2015) In vivo models of cortical acquired epilepsy. J Neurosci Methods 260:185–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel J, Pedley T (2008) Epilepsy: a comprehensive text book. Wolters Kluwer Health, Philadelphia, PA

    Google Scholar 

  • Englot DJ, Chang EF, Auguste KI (2011) Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. J Neurosurg 115:1248–1255

    Article  PubMed  Google Scholar 

  • Fisher RS, Van Emde Boas W, Blume W et al (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472

    Article  PubMed  Google Scholar 

  • Fisher RS, Acevedo C, Arzimanoglou A et al (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55:475–482

    Article  PubMed  Google Scholar 

  • Geller EB, Skarpaas TL, Gross RE et al (2017) Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia 58:994–1004

    Article  PubMed  Google Scholar 

  • Glasscock E, Qian J, Yoo JW et al (2007) Masking epilepsy by combining two epilepsy genes. Nat Neurosci 10:1554–1558

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk S, Fehm TF, Dean-Ben XL et al (2016) Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics 4:011007

    Article  PubMed  PubMed Central  Google Scholar 

  • Jefferys JG (1990) Basic mechanisms of focal epilepsies. Exp Physiol 75:127–162

    Article  CAS  PubMed  Google Scholar 

  • Jobst BC, Kapur R, Barkley GL et al (2017) Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia 58:1005–1014

    Article  PubMed  Google Scholar 

  • Khoshkhoo S, Vogt D, Sohal VS (2017) Dynamic, cell-type-specific roles for GABAergic interneurons in a mouse model of optogenetically inducible seizures. Neuron 93:291–298

    Article  CAS  PubMed  Google Scholar 

  • Krook-Magnuson E, Armstrong C, Oijala M et al (2013) On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 4:1376

    Article  PubMed  Google Scholar 

  • Krook-Magnuson E, Armstrong C, Bui A et al (2015) In vivo evaluation of the dentate gate theory in epilepsy. J Physiol 593:2379–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan P, Schachter SC, Brodie MJ (2011) Drug-resistant epilepsy. New Engl J Med 365:919–926

    Article  CAS  PubMed  Google Scholar 

  • Ladas TP, Chiang CC, Gonzalez-Reyes LE et al (2015) Seizure reduction through interneuron-mediated entrainment using low frequency optical stimulation. Exp Neurol 269:120–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehtimäki K, Möttönen T, Järventausta K (2016) Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy. Brain Stimul 9:268–275

    Article  PubMed  Google Scholar 

  • Lenkov DN, Volnova AB, Pope AR et al (2013) Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models. J Neurosci Methods 212:195–202

    Article  PubMed  Google Scholar 

  • Lu Y, Zhong C, Wang LL et al (2016) Optogenetic dissection of ictal propagation in the hippocampal-entorhinal cortex structures. Nat Commun 7:10,962

    Article  CAS  Google Scholar 

  • Osawa S, Iwasaki M, Hosaka R et al (2013) Optogenetically induced seizure and the longitudinal hippocampal network dynamics. PLoS One 8:e60928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paz JT, Davidson TJ, Frechette ES et al (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16:64–70

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Zamora A, Giordano J, Boyden ES et al (2019) Proceedings of the sixth deep brain stimulation think tank modulation of brain networks and application of advanced neuroimaging, neurophysiology, and optogenetics. Front Neurosci 13:1–21

    Article  Google Scholar 

  • Shorvon SD, Goodridge DM (2013) Longitudinal cohort studies of the prognosis of epilepsy: contribution of the national general practice study of epilepsy and other studies. Brain 136:3497–3510

    Article  PubMed  Google Scholar 

  • Sukhotinsky I, Chan AM, Ahmed OJ et al (2013) Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model. PLoS One 8:e62013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonnesen J, Sorensen AT, Deisseroth K et al (2009) Optogenetic control of epileptiform activity. Proc Natl Acad Sci U S A 106:12,162–12,167

    Article  CAS  Google Scholar 

  • Traub RD, Wong RK (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu C, Xu Z et al (2017) Depolarized GABAergic signaling in subicular microcircuits mediates generalized seizure in temporal lobe epilepsy. Neuron 95:92–105

    Article  CAS  PubMed  Google Scholar 

  • Wiebe S, Blume WT, Girvin JP et al (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. New Eng J Med 345:311–318

    Article  CAS  PubMed  Google Scholar 

  • Wieser H-G (2004) ILAE commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 45:695–714

    Article  PubMed  Google Scholar 

  • Wykes RC, Heeroma JH, Mantoan L et al (2012) Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4:161ra152

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 18 K08960, JERF TENKAN 18003 and The Clinical Research Promotion Program for Young Investigators of Tohoku University Hospital 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Ichiro Osawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osawa, SI., Tominaga, T. (2021). Application of Optogenetics in Epilepsy Research. In: Yawo, H., Kandori, H., Koizumi, A., Kageyama, R. (eds) Optogenetics. Advances in Experimental Medicine and Biology, vol 1293. Springer, Singapore. https://doi.org/10.1007/978-981-15-8763-4_39

Download citation

Publish with us

Policies and ethics