Skip to main content

Functional Connectome Analysis of the Striatum with Optogenetics

  • Chapter
  • First Online:
Optogenetics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1293))

Abstract

Neural circuit function is determined not only by anatomical connections but also by the strength and nature of the connections, that is functional or physiological connectivity. To elucidate functional connectivity, selective stimulation of presynaptic terminals of an identified neuronal population is crucial. However, in the central nervous system, intermingled input fibers make selective electrical stimulation impossible. With optogenetics, this becomes possible, and enables the comprehensive study of functional synaptic connections between an identified population of neurons and defined postsynaptic targets to determine the functional connectome. By stimulating convergent synaptic inputs impinging on individual postsynaptic neurons, low frequency and small amplitude synaptic connections can be detected. Further, the optogenetic approach enables the measurement of cotransmission and its relative strength. Recently, optogenetic methods have been more widely used to study synaptic connectivity and revealed novel synaptic connections and revised connectivity of known projections. In this chapter, I focus on functional synaptic connectivity in the striatum, the main input structure of the basal ganglia, involved in the motivated behavior, cognition, and motor control, and its disruption in a range of neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

BLA:

Basolateral amygdala

ChAT:

Choline acetyltransferase

ChI:

Cholinergic interneuron

ChR2:

Channelrhodopsin 2

CR:

Calretinin-expressing interneurons

Ctx:

Cortex

DA:

Dopamine

dSPN:

Direct-pathway spiny projection neuron

dStr:

Dorsal striatum

FAI:

Fast-adapting interneurons

FSI:

Fast-spiking interneuron

GP:

Globus pallidus

Hipp:

Hippocampus

iSPN:

Indirect-pathway spiny projection neuron

LTSI:

Low-threshold spike interneuron

M1:

Primary motor area of the cortex

M2:

Secondary motor area of the cortex

NAc:

Nucleus accumbens

NGF:

Neurogliaform interneuron

PFC:

Prefrontal cortex

PPN:

Pedunculopontine nucleus

PV:

Parvalbumin

SABI:

Spontaneously active bursting interneurons

SN:

Substantia nigra

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

SOM:

Somatostatin

Str:

Striatum

TH:

Tyrosine hydroxylase

Thal:

Thalamus

THIN:

Tyrosine hydroxylase-positive interneuron

VGLUT:

Vesicular glutamate transporter

vHipp:

Ventral hippocampus

VP:

Ventral pallidum

VTA:

Ventral tegmental area

References

  • Abrahao KP, Lovinger DM (2018) Classification of GABAergic neuron subtypes from the globus pallidus using wild-type and transgenic mice. J Physiol 596:4219–4235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravanis AM, Wang L-P, Zhang F et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156

    Article  PubMed  Google Scholar 

  • Assous M, Tepper JM (2019) Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. Eur J Neurosci 49:593–603

    Article  PubMed  Google Scholar 

  • Assous M, Kaminer J, Shah F et al (2017) Differential processing of thalamic information via distinct striatal interneuron circuits. Nat Commun 8:15860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assous M, Dautan D, Tepper JM et al (2019) Pedunculopontine glutamatergic neurons provide a novel source of feedforward inhibition in the striatum by selectively targeting interneurons. J Neurosci 39:4727–4473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bando Y, Grimm C, Cornejo VH et al (2019) Genetic voltage indicators. BMC Biol 17:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belujon P, Grace AA (2011) Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann N Y Acad Sci 1216:114–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertran-Gonzalez J, Bosch C, Maroteaux M et al (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bocklisch C, Pascoli V, Wong JCY et al (2013) Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science (New York, NY) 341:1521–1525

    Article  CAS  Google Scholar 

  • Britt JP, Benaliouad F, Mcdevitt RA et al (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76:790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MTC, Tan KR, O’connor EC et al (2013) Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492:452–456

    Article  CAS  Google Scholar 

  • Cazorla M, De Carvalho FD, Chohan MO et al (2014) Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 81:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi K, Holly EN, Davatolhagh MF et al (2019) Integrated anatomical and physiological mapping of striatal afferent projections. Eur J Neurosci 49:623–636

    Article  PubMed  Google Scholar 

  • Chuhma N, Tanaka KF, Hen R et al (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31:1183–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuhma N, Mingote S, Moore H et al (2014) Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron 81:901–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuhma N, Mingote S, Yetnikoff L et al (2018) Dopamine neuron glutamate cotransmission evokes a delayed excitation in lateral dorsal striatal cholinergic interneurons. Elife 7:e39786

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper AJ, Stanford IM (2000) Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. J Physiol 527(Pt 2):291–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crittenden JR, Graybiel AM (2011) Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding JB, Oh W-J, Sabatini BL et al (2012) Semaphorin 3E-Plexin-D1 signaling controls pathway-specific synapse formation in the striatum. Nat Neurosci 15:215–223

    Article  CAS  Google Scholar 

  • Dobbs Lauren K, Kaplan Alanna R, Lemos Julia C et al (2016) Dopamine regulation of lateral inhibition between striatal neurons gates the stimulant actions of cocaine. Neuron 90:1100–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellender TJ, Harwood J, Kosillo P et al (2013) Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J Physiol 591:257–272

    Article  CAS  PubMed  Google Scholar 

  • English DF, Ibanez-Sandoval O, Stark E et al (2012) GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci 15:123–130

    Article  CAS  Google Scholar 

  • Eskenazi D, Chuhma N, Mingote S et al (2020) Functional connectome mapping. In: Wilson GS, Michael AC (eds) Compendium of in-vivo monitoring in real-time molecular neuroscience. World Scientific, Singapore

    Google Scholar 

  • Exley R, Cragg SJ (2008) Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol 153:S283–S297

    Article  CAS  PubMed  Google Scholar 

  • Farhi SL, Parot VJ, Grama A et al (2019) Wide-area all-optical neurophysiology in acute brain slices. J Neurosci 39:4889–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg EH, Vanhoven MK, Bendesky A et al (2008) GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57:353–363

    Article  CAS  PubMed  Google Scholar 

  • Feldbauer K, Zimmermann D, Pintschovius V et al (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106:12317–12322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenno LE, Mattis J, Ramakrishnan C et al (2014) Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 11:763–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF et al (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama F, Sohn J, Nakano T et al (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33:668–677

    Article  PubMed  Google Scholar 

  • Gangarossa G, Espallergues J, De Kerchove D’e A et al (2013) Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse nucleus accumbens. Front Neural Circuit 7:22

    Google Scholar 

  • Gerfen CR (1985) The neostriatal mosaic. I Compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol 236:454–476

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glajch KE, Kelver DA, Hegeman DJ et al (2016) Npas1+ pallidal neurons target striatal projection neurons. J Neurosci 36:5472–5488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–387

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Wang D, He X et al (2015) Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS One 10:e0123381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haber SN, Fudge JL, Mcfarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higley MJ, Gittis AH, Oldenburg IA et al (2011) Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum. PLoS One 6:e19155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-I, Ganesan S, Luo SX et al (2015) Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science (New York, NY) 350:102–106

    Article  CAS  Google Scholar 

  • Kita H (2007) Globus pallidus external segment. Prog Brain Res 160:111–133

    Article  CAS  PubMed  Google Scholar 

  • Kravitz AV, Bonci A (2013) Optogenetics, physiology, and emotions. Front Behav Neurosci 7:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreitzer AC (2009) Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 32:127–147

    Article  CAS  PubMed  Google Scholar 

  • Lerner TN, Shilyansky C, Davidson TJ et al (2015) Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162:635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtman JW, Sanes JR (2008) Ome sweet ome: what can the genome tell us about the connectome? Curr Opin Neurobiol 18:346–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamaligas AA, Barcomb K, Ford CP (2019) Cholinergic transmission at muscarinic synapses in the striatum is driven equally by cortical and thalamic inputs. Cell Rep 28:1003–1014.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastro KJ, Bouchard RS, Holt HAK et al (2014) Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J Neurosci 34:2087–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcgregor MM, Mckinsey GL, Girasole AE et al (2019) Functionally distinct connectivity of developmentally targeted striosome neurons. Cell Rep 29:1419–1428.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer S, Gil M, Koser DE et al (2017) Distinct corticostriatal GABAergic neurons modulate striatal output neurons and motor activity. Cell Rep 19:1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Murali S, Cheng Y-F et al (2019) Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons. J Neurophysiol 122:1962–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingote S, Chuhma N, Kusnoor SV et al (2015) Functional connectome analysis of dopamine neuron glutamatergic connections in forebrain regions. J Neurosci 35:16259–16271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingote S, Amsellem A, Kempf A et al (2019) Dopamine-glutamate neuron projections to the nucleus accumbens medial shell and behavioral switching. Neurochem Int 129:104482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollinedo-Gajate I, Song C, Knöpfel T (2019) Genetically encoded fluorescent calcium and voltage indicators. In: Barrett JE, Page CP, Michel MC (eds) Concepts and principles of pharmacology: 100 years of the handbook of experimental pharmacology. Springer International Publishing, Cham

    Google Scholar 

  • Nelson AB, Bussert TG, Kreitzer AC et al (2014) Striatal cholinergic neurotransmission requires VGLUT3. J Neurosci 34:8772–8777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldenburg IA, Ding JB (2011) Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr Opin Neurobiol 21:425–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker PRL, Lalive AL, Kreitzer AC (2016) Pathway-specific remodeling of thalamostriatal synapses in parkinsonian mice. Neuron 89:734–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennartz CMA, Berke JD, Graybiel AM et al (2009) Corticostriatal interactions during learning, memory processing, and decision making. J Neurosci 29:12831–12838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulin J-F, Caronia G, Hofer C et al (2018) Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci 21:1260–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J, Zhang S, Wang H-L et al (2016) VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat Neurosci 19:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders A, Huang KW, Sabatini BL (2016) Globus pallidus externus neurons expressing parvalbumin interconnect the subthalamic nucleus and striatal interneurons. PLoS One 11:e0149798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sciamanna G, Ponterio G, Mandolesi G et al (2015) Optogenetic stimulation reveals distinct modulatory properties of thalamostriatal vs corticostriatal glutamatergic inputs to fast-spiking interneurons. Sci Rep 5:16742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scudder SL, Baimel C, Macdonald EE et al (2018) Hippocampal-evoked feedforward inhibition in the nucleus accumbens. J Neurosci 38:9091–9104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    Article  PubMed  Google Scholar 

  • Seung HS (2009) Reading the book of memory: sparse sampling versus dense mapping of connectomes. Neuron 62:17–29

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Nasu Y, Shkolnikov I et al (2020) Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: progress and prospects. Neurosci Res 152:3–14

    Article  PubMed  Google Scholar 

  • Shepherd G (1994) Neurobiology. Oxford University Press, Oxford

    Google Scholar 

  • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Straub C, Tritsch NX, Hagan NA et al (2014) Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. J Neurosci 34:8557–8569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Straub C, Saulnier JL, Bègue A et al (2016) Principles of synaptic organization of GABAergic interneurons in the striatum. Neuron 92:84–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuber GD, Hnasko TS, Britt JP et al (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szydlowski SN, Pollak Dorocic I, Planert H et al (2013) Target selectivity of feedforward inhibition by striatal fast-spiking interneurons. J Neurosci 33:1678–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tecuapetla F, Patel JC, Xenias H et al (2010) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci 30:7105–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tepper JM, Koós T, Wilson CJ (2004) GABAergic microcircuits in the neostriatum. Trends Neurosci 27:662–669

    Article  CAS  PubMed  Google Scholar 

  • Tepper JM, Tecuapetla F, Koos T et al (2010) Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat 4:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tepper JM, Koós T, Ibanez-Sandoval O et al (2018) Heterogeneity and diversity of striatal GABAergic interneurons: update 2018. Front Neuroanat 12:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490:262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tritsch NX, Oh WJ, Gu C et al (2014) Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. Elife 3:e01936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Bockstaele EJ, Pickel VM (1995) GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res 682:215–221

    Article  PubMed  Google Scholar 

  • Wietek J, Prigge M (2016) Enhancing channelrhodopsins: an overview. In: Kianianmomeni A (ed) Optogenetics. Humana Press, New York, NY

    Google Scholar 

  • Wilson CJ (2004) The basal ganglia. In: Shepherd G (ed) The synaptic organization of the brain, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  • Xia Y, Driscoll JR, Wilbrecht L et al (2011) Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci 31:7811–7816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HH, St-Pierre F (2016) Genetically encoded voltage indicators: opportunities and challenges. J Neurosci 36:9977–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  CAS  PubMed  Google Scholar 

  • Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wienecke CFR, Nachtrab G et al (2016) A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530:219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann D, Zhou A, Kiesel M et al (2008) Effects on capacitance by overexpression of membrane proteins. Biochem Biophys Res Commun 369:1022–1026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Mihran Bakalian and Stephen Rayport for helpful comments and discussion. Writing of this chapter was supported by NIH grant MH117128 and DA038966.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nao Chuhma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chuhma, N. (2021). Functional Connectome Analysis of the Striatum with Optogenetics. In: Yawo, H., Kandori, H., Koizumi, A., Kageyama, R. (eds) Optogenetics. Advances in Experimental Medicine and Biology, vol 1293. Springer, Singapore. https://doi.org/10.1007/978-981-15-8763-4_27

Download citation

Publish with us

Policies and ethics