Skip to main content

Channelrhodopsin-Dependent Photo-Behavioral Responses in the Unicellular Green Alga Chlamydomonas reinhardtii

  • Chapter
  • First Online:
Optogenetics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1293))

Abstract

Channelrhodopsins (ChRs) are the light-gated ion channels that have opened the research field of optogenetics. They were originally identified in the green alga Chlamydomonas reinhardtii, a biciliated unicellular alga that inhabits in freshwater, swims with the cilia, and undergoes photosynthesis. It has various advantages as an experimental organism and is used in a wide range of research fields including photosynthesis, cilia, and sexual reproduction. ChRs function as the primary photoreceptor for the cell’s photo-behavioral responses, seen as changes in the manner of swimming after photoreception. In this chapter, we will introduce C. reinhardtii as an experimental organism and explain our current understanding of how the cell senses light and shows photo-behavioral responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CGL:

Carotenoid granule layers

ChR:

Channelrhodopsin

Cop:

Chlamyopsin

EST:

Expressed sequence tag

IFT:

Intraflagellar transport

PRC:

Photoreceptor current

PSY:

Phytoene synthase

References

  • Asamizu E, Nakamura Y, Sato S, Fukuzawa H, Tabata S (1999) A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. DNA Res 6:369–373

    Article  PubMed  Google Scholar 

  • Asamizu E et al (2000) Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii. DNA Res 7:305–307

    Article  PubMed  Google Scholar 

  • Awasthi M, Ranjan P, Sharma K, Veetil SK, Kateriya S (2016) The trafficking of bacterial type rhodopsins into the Chlamydomonas eyespot and flagella is IFT mediated. Sci Rep 6:34646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P (2008) Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessen M, Fay RB, Witman GB (1980) Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J Cell Biol 86:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd JS, Lamb MR, Dieckmann CL (2011a) Miniature- and multiple-eyespot loci in Chlamydomonas reinhardtii define new modulators of eyespot photoreception and assembly. G3 (Bethesda) 1:489–498

    Article  CAS  Google Scholar 

  • Boyd JS, Mittelmeier TM, Lamb MR, Dieckmann CL (2011b) Thioredoxin-family protein EYE2 and Ser/Thr kinase EYE3 play interdependent roles in eyespot assembly. Mol Biol Cell 22:1421–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary SK, Baskaran A, Sharma P (2019) Reentrant efficiency of Phototaxis in Chlamydomonas reinhardtii cells. Biophys J 117:1508–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole DG (2003) The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic 4:435–442

    Article  CAS  PubMed  Google Scholar 

  • Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demmig-Adams B, Adams WW 3rd (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Dieckmann CL (2003) Eyespot placement and assembly in the green alga Chlamydomonas. Bioessays 25:410–416

    Article  PubMed  Google Scholar 

  • Dutcher SK (2003) Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii. Traffic 4:443–451

    Article  CAS  PubMed  Google Scholar 

  • Eichenberger W, Boschetti A, Michel HP (1986) Lipid and pigment composition of a chlorophyll beta-deficient mutant of Chlamydomonas reinhardii. Physiol Plant 66:589–594

    Article  CAS  Google Scholar 

  • Foster KW, Smyth RD (1980) Light antennas in phototactic algae. Microbiol Rev 44:572–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakanishi K (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:756–759

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114:3857–3863

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann MDW, Kateriya S, Hegemann P (2003) Rhodopsinrelated proteins, cop1, cop2 and chop1, in Chlamydomonas reinhardtii. In: Batschauer A (ed) Photoreceptors and light signaling. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Fujiu K, Nakayama Y, Yanagisawa A, Sokabe M, Yoshimura K (2009) Chlamydomonas CAV2 encodes a voltage- dependent calcium channel required for the flagellar waveform conversion. Curr Biol 19:133–139

    Article  CAS  PubMed  Google Scholar 

  • Gallaher SD, Fitz-Gibbon ST, Glaesener AG, Pellegrini M, Merchant SS (2015) Chlamydomonas genome resource for laboratory strains reveals a mosaic of sequence variation, identifies true strain histories, and enables strain-specific studies. Plant Cell 27:2335–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geimer S, Melkonian M (2004) The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J Cell Sci 117:2663–2674

    Article  CAS  PubMed  Google Scholar 

  • Goodenough UW, Weiss RL (1978) Interrelationships between microtubules, a striated fiber, and the gametic mating structure of Chlamydomonas reinhardi. J Cell Biol 76:430–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregonis DE, Rilling HC (1974) The stereochemistry of trans-phytoene synthesis. Some observations on lycopersene as a carotene precursor and a mechanism for the synthesis of cis- and trans-phytoene. Biochemistry 13:1538–1542

    Article  CAS  PubMed  Google Scholar 

  • Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P (2017) Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell 29:2498–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross CH, Ranum LPW, Lefebvre PA (1988) Extensive restriction fragment length polymorphisms in a new isolate of Chlamydomonas reinhardtii. Curr Genet 13:503–508

    Article  CAS  PubMed  Google Scholar 

  • Gumpel NJ, Rochaix JD, Purton S (1994) Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr Genet 26:438–442

    Article  CAS  PubMed  Google Scholar 

  • Harris EH (2009a) Chlamydomonas in the laboratory. In: Harris EH (ed) The Chlamydomonas sourcebook, vol 1, 2nd edn. Academic Press, London, pp 241–302

    Google Scholar 

  • Harris EH (2009b) The sexual cycle. In: Harris EH (ed) The Chlamydomonas sourcebook, vol 1, 2nd edn. Academic Press, London, pp 119–157

    Google Scholar 

  • Hartshorne JN (1953) The function of the eyespot in Chlamydomonas. New Phytol 52:292–297

    Article  Google Scholar 

  • Hayashi M, Yagi T, Yoshimura K, Kamiya R (1998) Real-time observation of Ca2+−induced basal body reorientation in Chlamydomonas. Cell Motil Cytoskeleton 41:49–56

    Article  CAS  PubMed  Google Scholar 

  • Hegemann P, Berthold P (2009) Sensory photoreceptors and light control of flagellar activity. In: Witman GB (ed) The Chlamydomonas sourcebook, vol 3, 2nd edn. Academic Press, San Diego, CA, pp 395–429

    Chapter  Google Scholar 

  • Holmes JA, Dutcher SK (1989) Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci 94:273–285

    Article  PubMed  Google Scholar 

  • Hyams JS, Borisy GG (1978) Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci 33:235–253

    Article  CAS  PubMed  Google Scholar 

  • Ide T, Mochiji S, Ueki N, Yamaguchi K, Shigenobu S, Hirono M, Wakabayashi K (2016) Identification of the agg1 mutation responsible for negative phototaxis in a “wild-type” strain of Chlamydomonas reinhardtii. Biochem Biophys Rep 7:379–385

    PubMed  PubMed Central  Google Scholar 

  • Iomini C, Li L, Mo W, Dutcher SK, Piperno G (2006) Two flagellar genes, AGG2 and AGG3, mediate orientation to light in Chlamydomonas. Curr Biol 16:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Isogai N, Kamiya R, Yoshimura K (2000) Dominance between the two flagella during phototactic turning in Chlamydomonas. Zool Sci 17:1261–1266

    Article  Google Scholar 

  • Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13:1465–1469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya R, Hasegawa E (1987) Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii. Exptl Cell Res 173, 299–304

    Google Scholar 

  • Kamiya R, Witman GB (1984) Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J Cell Biol 98:97–107

    Article  CAS  PubMed  Google Scholar 

  • Kateriya S, Nagel G, Bamberg E, Hegemann P (2004) “Vision” in single-celled algae. News Physiol Sci 19:133–137

    CAS  PubMed  Google Scholar 

  • Kong F, Yamaoka Y, Ohama T, Lee Y, Li-Beisson Y (2019) Molecular genetic tools and emerging synthetic biology strategies to increase cellular oil content in Chlamydomonas reinhardtii. Plant Cell Physiol 60:1184–1196

    Article  CAS  PubMed  Google Scholar 

  • Kozminski KG, Beech PL, Rosenbaum JL (1995) The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 131:1517–1527

    Article  CAS  PubMed  Google Scholar 

  • Kreimer G (2009) The green algal eyespot apparatus: a primordial visual system and more? Curr Genet 55:19–43

    Article  CAS  PubMed  Google Scholar 

  • Lamb MR, Dutcher SK, Worley CK, Dieckmann CL (1999) Eyespot-assembly mutants in Chlamydomonas reinhardtii. Genetics 153:721–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda A, Yoshimura K, Sineshchekov OA, Hirono M, Kamiya R (1998) Isolation and characterization of novel Chlamydomonas mutants that display phototaxis but not photophobic response. Cell Motil Cytoskeleton 41:353–362

    Article  CAS  PubMed  Google Scholar 

  • McCarthy SS, Kobayashi MC, Niyogi KK (2004) White mutants of Chlamydomonas reinhardtii are defective in phytoene synthase. Genetics 168:1249–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant SS et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittelmeier TM, Thompson MD, Lamb MR, Lin H, Dieckmann CL (2015) MLT1 links cytoskeletal asymmetry to organelle placement in Chlamydomonas. Cytoskeleton (Hoboken) 72:113–123

    Article  CAS  Google Scholar 

  • Morel-Laurens NML, Feinleib MEH (1983) Photomovement in an “eyeless” mutant of Chlamydomonas. Photochem Photobiol 37:189–194

    Article  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  • Nagel G et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel G, Szellas T, Kateriya S, Adeishvili N, Hegemann P, Bamberg E (2005) Channelrhodopsins: directly light-gated cation channels. Biochem Soc Trans 33:863–866

    Article  CAS  PubMed  Google Scholar 

  • Nelson JA, Lefebvre PA (1995) Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol Cell Biol 15:5762–5769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A 94:14162–14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okita N, Isogai N, Hirono M, Kamiya R, Yoshimura K (2005) Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein. J Cell Sci 118:529–537

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, Sineschekov OA, Witman GB (1995) Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii. J Cell Biol 131:427–440

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, Dickert BL, Witman GB (1999) The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol 144:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranum LP, Thompson MD, Schloss JA, Lefebvre PA, Silflow CD (1988) Mapping flagellar genes in Chlamydomonas using restriction fragment length polymorphisms. Genetics 120:109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rüffer U, Nultsch W (1987) Comparison of the beating of cis- and trans-flagella of Chlamydomonas cells held on micropipettes. Cell Motil 7:87–93

    Article  Google Scholar 

  • Rüffer U, Nultsch W (1991) Flagellar photoresponses of Chlamydomonas cells held on micropipettes: II. Change in flagellar beat pattern. Cell Motil Cytoskeleton 18:269–278

    Article  Google Scholar 

  • Salisbury JL, Baron AT, Sanders MA (1988) The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells. J Cell Biol 107:635–641

    Article  CAS  PubMed  Google Scholar 

  • Sanders MA, Salisbury JL (1989) Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol 108:1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82:523–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sineshchekov OA, Govorunova EG, Der A, Keszthelyi L, Nultsch W (1992) Photoelectric responses in phototactic flagellated algae measured in cell-suspension. J Photoch Photobio B Biol 13:119–134

    Article  Google Scholar 

  • Sineshchekov OA, Govorunova EG, Der A, Keszthelyi L, Nultsch W (1994) Photoinduced electric currents in carotenoid-deficient Chlamydomonas mutants reconstituted with retinal and its analogs. Biophys J 66:2073–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sineshchekov OA, Jung K-H, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth RD, Martinek GW, Ebersold WT (1975) Linkage of six genes in Chlamydomonas reinhardtii and the construction of linkage test strains. J Bacteriol 124:1615–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sodeinde OA, Kindle KL (1993) Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 90:9199–9203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stavis RL, Hirschberg R (1973) Phototaxis in Chlamydomonas reinhardtii. J Cell Biol 59:367–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T et al (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717

    Article  CAS  PubMed  Google Scholar 

  • Ueki N et al (2016) Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 113:5299–5304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von der Heyde EL, Hallmann A (2020) Babo1, formerly Vop1 and Cop1/2, is no eyespot photoreceptor but a basal body protein illuminating cell division in Volvox carteri. Plant J 102:276–298

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, King SM (2006) Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise. J Cell Biol 173:743–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi K, Yagi T, Kamiya R (1997) Ca2+−dependent waveform conversion in the flagellar axoneme of Chlamydomonas mutants lacking the central-pair/radial spoke system. Cell Motil Cytoskeleton 38:22–28

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi K, Misawa Y, Mochiji S, Kamiya R (2011) Reduction-oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 108:11280–11284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright RL, Salisbury J, Jarvik JW (1985) A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol 101:1903–1912

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Kamiya R (2001) The sensitivity of Chlamydomonas photoreceptor is optimized for the frequency of cell body rotation. Plant Cell Physiol 42:665–672

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang LP, Boyden ES, Deisseroth K (2006) Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3:785–792

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Ritsu Kamiya (Univ. Tokyo, Chuo Univ.) for critical reading of this manuscript, and Dr. Masafumi Hirono (Hosei Univ.) and Mr. Satoaki So (Tokyo Tech) for discussion. CC-5499 was made by Ms. Olga Baidukova in the Peter Hegemann’s Laboratory in Humboldt University of Berlin, and purchased from Chlamydomonas Resource Center. This work was supported by Japan Society for the Promotion of Science KAKENHI Grants 19H03242 to KW, 19K23758 to NU, by Ohsumi Frontier Science Foundation to KW, by Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials to KW, and by the Assistant Staffing Program by the Gender Equality Promotion Section, Office of Public Engagement, Tokyo Institute of Technology to AI and KW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Wakabayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wakabayashi, i., Isu, A., Ueki, N. (2021). Channelrhodopsin-Dependent Photo-Behavioral Responses in the Unicellular Green Alga Chlamydomonas reinhardtii. In: Yawo, H., Kandori, H., Koizumi, A., Kageyama, R. (eds) Optogenetics. Advances in Experimental Medicine and Biology, vol 1293. Springer, Singapore. https://doi.org/10.1007/978-981-15-8763-4_2

Download citation

Publish with us

Policies and ethics