Skip to main content

Hyper-graph Robust Non-negative Matrix Factorization Method for Cancer Sample Clustering and Feature Selection

  • Conference paper
  • First Online:
Recent Advances in Data Science (IDMB 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1099))

Included in the following conference series:

  • 322 Accesses

Abstract

Non-negative Matrix Factorization (NMF) algorithm is a useful method for data dimensionality reduction, which is performed with the Euclidean distance. However, the basic NMF only assumes that data will be destroyed by Gaussian noise. It ignores both the intrinsic geometrical structure and the influence of sparse noises existing in the gene expression data. To enhance the robustness of the NMF, a novel method called Hyper-graph Robust Non-negative Matrix Factorization (HRNMF) is proposed for cancer sample clustering and feature selection. The merits of the HRNMF mainly consist of two aspects. Firstly, the \( L_{ 2, 1} \)-norm is combined with the objective function, which can effectively handle noise and outliers. Secondly, the manifold information and sparsity are also considered so we add the hyper-graph regularization term and sparse constraints to the error function. It can effectively preserve the geometric structure and enhance matrix sparsity. Experiments on Cancer Genome Atlas (TCGA) gene expression data have demonstrated that HRNMF performs better than other advanced methods in cancer sample clustering and feature selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  2. Leeuw, J.D.: Nonlinear principal component analysis (2011)

    Google Scholar 

  3. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15, 265–286 (2006)

    Article  MathSciNet  Google Scholar 

  4. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  5. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  6. Zhu, R., Liu, J.X., Zhang, Y.K., Guo, Y.: A robust manifold graph regularized nonnegative matrix factorization algorithm for cancer gene clustering. Molecules 22, 21–31 (2017)

    Google Scholar 

  7. Huang, Z., Zhou, A., Zhang, G.: Non-negative matrix factorization: a short survey on methods and applications. In: Li, Z., Li, X., Liu, Y., Cai, Z. (eds.) ISICA 2012. CCIS, pp. 331–340. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34289-9_37

    Chapter  Google Scholar 

  8. Wang, Y.-X., Zhang, Y.-J.: Nonnegative matrix factorization: a comprehensive review. IEEE Trans. Knowl. Data Eng. 25, 1336–1353 (2013)

    Article  Google Scholar 

  9. Kong, D., Ding, C., Huang, H.: Robust nonnegative matrix factorization using L21-norm. In: ACM International Conference on Information and Knowledge Management (2011)

    Google Scholar 

  10. He, W., Zhang, H., Zhang, L.: Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 4267–4279 (2017)

    Article  Google Scholar 

  11. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  12. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1548–1560 (2011)

    Article  Google Scholar 

  13. Zeng, K., Yu, J., Li, C., You, J., Jin, T.: Image clustering by hyper-graph regularized non-negative matrix factorization. Neurocomputing 138, 209–217 (2014)

    Article  Google Scholar 

  14. Yu, N., Liu, J.X., Gao, Y.L., Zheng, C.H., Wang, J., Wu, M.J.: Graph regularized robust non-negative matrix factorization for clustering and selecting differentially expressed genes. In: IEEE International Conference on Bioinformatics and Biomedicine (2017)

    Google Scholar 

  15. Li, S.Z., Hou, X., Zhang, H., Cheng, Q.: Learning spatially localized, parts-based representation. In: CVPR, vol. 1, pp. 207–212 (2001)

    Google Scholar 

  16. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)

    Google Scholar 

  17. Konstantinova, E.V., Skorobogatov, V.A.: Application of hypergraph theory in chemistry. Discret. Math. 235, 365–383 (2001)

    Article  MathSciNet  Google Scholar 

  18. Simovici, D.A., Djeraba, C.: Graphs Hypergraphs 34, 1307–1315 (1973)

    Google Scholar 

  19. Qi, L., Jiang, H.: Semismooth Karush-Kuhn-Tucker equations and convergence analysis of Newton and quasi-Newton methods for solving these equations. Math. Oper. Res. 22, 301–325 (1997)

    Article  MathSciNet  Google Scholar 

  20. Katarzyna, T., Patrycja, C., Maciej, W.: The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19, 68–77 (2015)

    Google Scholar 

  21. Cristofano, A.D., Pesce, B., Cordon-Cardo, C., Pandolfi, P.P.: PTEN is essential for embryonic development and tumour suppression. Nat. Genet. 19, 348 (1998)

    Article  Google Scholar 

  22. Myers, M.P.: The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl. Acad. Sci. U. S. A. 23, 13513–13518 (1998)

    Article  Google Scholar 

  23. Neshat, M.S., et al.: Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. 98, 10314–10319 (2001)

    Article  Google Scholar 

  24. Hitchins, M.P., et al.: Inheritance of a cancer-associated MLH1 germ-line epimutation. New Engl. J. Med. 356, 697–705 (2007)

    Article  Google Scholar 

  25. Edelmann, W., et al.: Meiotic pachytene arrest in MLH1-deficient mice. Cell 85, 1125–1134 (1996)

    Article  Google Scholar 

  26. Baker, S.M., et al.: Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat. Genet. 13, 336 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grants of the National Science Foundation of China, Nos. 61872220, and 61702299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Zhen Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiao, CN., Wu, TR., Liu, JX., Kong, XZ. (2020). Hyper-graph Robust Non-negative Matrix Factorization Method for Cancer Sample Clustering and Feature Selection. In: Han, H., Wei, T., Liu, W., Han, F. (eds) Recent Advances in Data Science. IDMB 2019. Communications in Computer and Information Science, vol 1099. Springer, Singapore. https://doi.org/10.1007/978-981-15-8760-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8760-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8759-7

  • Online ISBN: 978-981-15-8760-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics