Skip to main content

An Automatic Violence Detection Technique Using 3D Convolutional Neural Network

  • Conference paper
  • First Online:
Sustainable Communication Networks and Application

Abstract

In the field of machine learning, the deep learning technique plays a very important role as it is useful in various real-life domains. As various crimes and misdeeds are occurring in various public places because of lack of proper monitoring, a number of methods have been proposed for detecting violence from videos. Automatic violence detection has gained increased research importance in case of video surveillance. However, they suffer from various limitations and most of the times it depends on special criteria. In this perspective, this paper proposes an effective violence detection method from videos using 3D convolutional neural network. The proposed methodology uses machine learning and deep learning techniques for improving the accuracy. Comprehensive performance analyses have proven that the proposed method achieves high performance in case of detecting violence from videos. The experimental results also prove that the proposed technique outperforms various other existing methods for detecting violence from videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22(5), 717–727 (2000)

    Article  Google Scholar 

  2. Guo, X., Chen, L., Shen, C.: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 93, 490–502 (2016)

    Article  Google Scholar 

  3. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)

    Article  Google Scholar 

  4. Vashistha, P., Singh, J.P., Khan, M.A.: A comparative analysis of different violence detection algorithms from videos. In Advances in Data and Information Sciences, pp. 577–589. Springer, Singapore (2020)

    Google Scholar 

  5. Fouad, A.E., Ali, S., Soliman, M., Osman, A.: Domestic violence inducing females’ gynecological and urological problems: the forensic and social perspectives. Ain Shams J. Forensic Med. Clin. Toxicol. 32(1), 20–30 (2019)

    Article  Google Scholar 

  6. Nam, J., Alghoniemy, M., Tewfik, A.H.: Audio-visual content-based violent scene characterization. In: Proceedings 1998 International Conference on Image Processing. ICIP 1998 Cat. No. 98CB36269, vol. 1, pp. 353–357. IEEE, October 1998

    Google Scholar 

  7. Clarin, C., Dionisio, J., Echavez, M., Naval, P.: DOVE: detection of movie violence using motion intensity analysis on skin and blood. PCSC 6, 150–156 (2005)

    Google Scholar 

  8. Gao, Y., Liu, H., Sun, X., Wang, C., Liu, Y.: Violence detection using oriented violent flows. Image Vis. Comput. 48, 37–41 (2016)

    Article  Google Scholar 

  9. Graf, H.P., Cosatto, E., Bottou, L., Dourdanovic, I., Vapnik, V.: Parallel support vector machines: the cascade SVM. In: Advances in Neural Information Processing Systems, pp. 521–528 (2005)

    Google Scholar 

  10. Mavroforakis, M.E., Theodoridis, S.: A geometric approach to support vector machine (SVM) classification. IEEE Trans. Neural Netw. 17(3), 671–682 (2006)

    Article  Google Scholar 

  11. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  12. Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class adaboost. Stat. Interface 2(3), 349–360 (2009)

    Article  MathSciNet  Google Scholar 

  13. Nievas, E.B., Suarez, O.D., García, G.B. Sukthankar, R.: Violence detection in video using computer vision techniques. In: International Conference on Computer Analysis of Images and Patterns, pp. 332–339. Springer, Heidelberg, August 2011

    Google Scholar 

  14. Chen, M.Y. Hauptmann, A.: MoSIFT: recognizing human actions in surveillance videos (2009)

    Google Scholar 

  15. Willems, G., Tuytelaars, T, Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In European Conference on Computer Vision, pp. 650–663. Springer, Heidelberg, October 2008

    Google Scholar 

  16. Yuan, Y., Zheng, H., Li, Z., Zhang, D.: Video action recognition with spatio-temporal graph embedding and spline modeling. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2422–2425. IEEE, March 2010

    Google Scholar 

  17. Kumar, T.S.: A novel method for HDR video encoding, compression and quality evaluation. J. Innov. Image Process. (JIIP) 1(02), 71–80 (2019)

    Article  Google Scholar 

  18. Bashar, A.: Survey on evolving deep learning neural network architectures. J. Artif. Intell. 1(02), 73–82 (2019)

    Google Scholar 

  19. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

    Google Scholar 

  20. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, pp. 807–814 (2010)

    Google Scholar 

  21. Dunne, R.A., Campbell, N.A.: On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function. In: Proceedings of 8th Australian Conference on the Neural Networks, Melbourne, vol. 181, p. 185, June 1997

    Google Scholar 

  22. Wang, C., Pelillo, M., Siddiqi, K.: Dominant set clustering and pooling for multi-view 3d object recognition. arXiv preprint arXiv:1906.01592 (2019)

  23. Kim, J., Kim, H.: An effective intrusion detection classifier using long short-term memory with gradient descent optimization. In: 2017 International Conference on Platform Technology and Service (PlatCon), pp. 1–6. IEEE (2017)

    Google Scholar 

  24. Perkel, J.M.: Why Jupyter is data scientists’ computational notebook of choice. Nature 563(7732), 145–147 (2018)

    Article  Google Scholar 

  25. Tang, Y.: TF. Learn: TensorFlow’s high-level module for distributed machine learning. arXiv preprint arXiv:1612.04251 (2016)

  26. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  27. Antonio, G., Pal, S.T.: Deep learning with Keras pipeline. In: Proceedings 1998 International Conference on Image. Packt Publishing Ltd. (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Jahidul Islam Razin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdul Karim, M., Jahidul Islam Razin, M., Ahmed, N.U., Shopon, M., Alam, T. (2021). An Automatic Violence Detection Technique Using 3D Convolutional Neural Network. In: Karuppusamy, P., Perikos, I., Shi, F., Nguyen, T.N. (eds) Sustainable Communication Networks and Application. Lecture Notes on Data Engineering and Communications Technologies, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-15-8677-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8677-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8676-7

  • Online ISBN: 978-981-15-8677-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics