Skip to main content

Theoretical Models of Light Scattering and Absorption

  • Chapter
  • First Online:
Near-Infrared Spectroscopy

Abstract

When light interacts with a single particle, there are three possible outcomes: absorption, scattering, or transmission. In spectroscopy, one measures the remission from and/or transmission through a macroscopic sample. Such a sample might contain countless locations at which there is a change in refractive index, each of which gives rise to scattered light. This fact poses a challenge in building theoretical models applicable to spectroscopy: even if our theoretical understanding of single interactions is very good, the number of individual interactions is typically too big to make accounting for all of them realistic. This chapter presents an overview of modeling strategies that can be of use in near infrared spectroscopy. Recognizing that no one approach is uniformly applicable, care is taken to call attention to assumptions made in each modeling approach and limitations that are imposed by these assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. E. Knowles Middleton, Bouguer, Lambert, and The Theory of Horizontal Visibility. Isis 51, no. 2 (1960): 145–49. https://www.jstor.org/stable/226845.

  2. W.W. Wendlandt, H.G. Hecht, Reflectance Spectroscopy (John Wiley and Sons, New York, 1966)

    Google Scholar 

  3. J.M. Chalmers, P.R. Griffiths, Handbook of Vibrational Spectroscopy (John Wiley & Sons Ltd., Chichester, UK, 2002)

    Google Scholar 

  4. C.V. Raman, A new radiation. Indian J. Phys. 2, 387–398 (1928)

    CAS  Google Scholar 

  5. M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, Handbook of Optics, 2nd ed., vol. 1, McGraw-Hill, Inc., New York (1995

    Google Scholar 

  6. G.G. Stokes, On the intensity of the light reflected from or transmitted through a pile of plates. Proceedings of the Royal Society of London 11, 545 (1862)

    Article  Google Scholar 

  7. A. Schuster, Radiation Through a Foggy Atmosphere. Astrophysical J.21 , 1 (1905)

    Google Scholar 

  8. G. Kortüm, Reflectance Spectroscopy (Springer, Berlin, 1969)

    Book  Google Scholar 

  9. P. Kubelka, F. Munk, Ein Beitrag zur Optik der Farbanstriche. Z.Tech. Phys. (Leipzig), 12 (1931)

    Google Scholar 

  10. P. Kubelka, New Contributions to the Optics of Intensely Light-Scattering Materials. Part I J. Optical Soc. America 38, 5 (1948)

    Google Scholar 

  11. T. Burger, J. Kuhn, R. Caps, J. Fricke, Quantitative Determination of the Scattering and Absorption Coefficients from Diffuse Reflectance and Transmittance Measurements: Application to Pharmaceutical Powders. Appl. Spectrosc. 51(3), 309–322 (1997)

    Article  CAS  Google Scholar 

  12. R.G. Giovanelli, Reflection by Semi-infinite Diffusers. Optica Acta: International Journal of Optics 2(4), 153–162 (1955)

    Article  Google Scholar 

  13. F. Benford, Radiation in a Diffusing Medium. J. Optical Soc. America 36, 524–554 (1946)

    Article  CAS  Google Scholar 

  14. D. J. Dahm, K.D. Dahm, Bridging the continuum-discontinuum gap in the theory of diffuse reflectance. J. Near Infrared Spectroscopy 7, 47-53 (1999)

    Google Scholar 

  15. D.J. Dahm, K.D. Dahm, K.H. Norris, Test of the representative layer theory of diffuse reflectance. J. Near Infrared Spectrosc. 8, 171–181 (2000)

    Article  CAS  Google Scholar 

  16. D.J. Dahm, K.D. Dahm, Representative layer theory for diffuse reflectance. Appl. Spectrosc. 53, 647–654 (1999)

    Article  CAS  Google Scholar 

  17. M. Dexaux, N. Nathier-Dufour, P. Robert, D. Bertrand, Effects of particle size on the near-infrared reflectance spectra of Wheat and Rape Seed meal mixtures. Appl. Spectrosc. 49(1), 84–91 (1995)

    Article  Google Scholar 

  18. D.J. Dahm, K.D. Dahm, Interpreting Diffuse Reflectance and Transmittance (NIR Publications, Chichester, UK, 2007)

    Google Scholar 

  19. B. G. Yust, D. K. Sardar, and A. Tsin, “A Comparison of Methods for Determining Optical Properties of Thin Samples.” Proceedings of SPIE--the International Society for Optical Engineering, 7562 (2010): 75620C.

    Google Scholar 

  20. A. Gobrecht, R. Bendoula, J.M. Roger, V. Bellon-Maurel, Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials. Anal. Chim Acta 853, 486–494 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Dahm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahm, K.D., Dahm, D.J. (2021). Theoretical Models of Light Scattering and Absorption. In: Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S.B. (eds) Near-Infrared Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-15-8648-4_3

Download citation

Publish with us

Policies and ethics