Skip to main content

Inline and Online Process Analytical Technology with an Outlook for the Petrochemical Industry

  • Chapter
  • First Online:
Near-Infrared Spectroscopy

Abstract

The concept of process analytical technology (PAT) started around the 1970s with the advent of personal computers in combination with instrumental analytical chemistry. Over the years, increasingly sophisticated and holistic quality management concepts such as quality by design (QbD) were developed and strongly promoted, especially by the American Food and Drug Agency (FDA) around 2002. Recently, the German initiative for the Fourth Industrial Revolution “Industrie 4.0 (i40)” was introduced, which is similar to the US “Industrial Internet Consortium (IIC)” concept or the “Industrial Internet of Things (IIoT).” Another initiative in Asia is the Chinese campaign “Made in China 2025.” The role of PAT in all these concepts is to develop and integrate context-sensitive intelligent sensors to enable understanding of the process at the basic mechanistic (molecular) level in order to achieve knowledge-based production in the future. This contribution starts with a short introduction into the concept of PAT/QbD and other new concepts for the next generation of spectroscopic sensors in the manufacturing industry. The fundamental limitations of spectroscopy in terms of sensitivity and selectivity are discussed, and the need to increase robustness for industrial applications is described. A critical discussion on problems and problem solutions are provided when scattering samples are investigated. An outlook on how to use NIR spectroscopy within the petrochemical industry and how to manage a PAT project complements this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  1. R.W. Kessler, W. Kessler, Best practice and performance of hardware in Process Analytical Technology (PAT), chapter 61.1., in Comprehensive Chemometrics 2nd edition: Chemical and Biochemical Data Analysis (in print, Elsevier BV, 2020)

    Google Scholar 

  2. Industrial Internet of things (IIoT), Wikipedia: https://en.wikipedia.org/wiki/Industrial_Internet_of_Things, and references therein, Industrial Internet Consortium, in Industrial Internet Reference Architecture Technical Report, version 1.9, (2019). https://www.iiconsortium.org/IIRA. Accessed 01 Oct 2019

  3. Industrie 4.0, https://www.plattform-i40.de/PI40/Navigation/EN/Home/home.html, online library: https://www.plattform-i40.de/PI40/Navigation/EN/InPractice/Online-Library/online-library.html. Accessed 01 Oct 2019

  4. A. Kandelbauer, M. Rahe, R.W. Kessler, Process control and quality assurance–industrial perspectives, in Handbook of Biophotonics, Vol.3: Photonics in Pharmaceutics, Bioanalysis and Environmental Research, 1st ed., eds. by J. Popp, V.V. Tuchin, A. Chiou, A. Heinemann (Wiley-VCH Verlag GmbH & Co. KGaA, 2012), Chapter 1, pp. 1–69

    Google Scholar 

  5. European Medicines Agency, 2014: Guideline on the use of near infrared spectroscopy by the pharmaceutical industry and the data requirements for new submissions and variations: www.ema.europa.eu, EMEA/CHMP/CVMP/QWP/17760/2009 Rev2, Accessed 01 Oct 2019

  6. K.H. Esbensen, P. Geladi, A. Larsen, The replication myth 1. NIR News 24(1), 17–20 (2013)

    Article  Google Scholar 

  7. K.H. Esbensen, P. Geladi, A. Larsen, The replication myth 2: Quantifying empirical sampling plus analysis variability. NIR News 24(3), 15–19 (2013)

    Article  Google Scholar 

  8. K.H. Esbensen, P. Geladi, A. Larsen, Myth: Process near infrared calibration spectra and reference samples can always be made to match properly. NIR News 24(4), 23–25 (2013)

    Article  Google Scholar 

  9. European Pharmacopoeia Monographs, Near Infrared spectroscopy (9th edition: 9.0, 2018): Ph. Eur. Monograph 2.2.40 Near-infrared Spectroscopy, p. 64–69, Process analytical technology (10th edition 10.0, effective from 1st January 2020): Ph. Eur. Monograph 5.25 Process analytical technology

    Google Scholar 

  10. The ICH International Conference on Harmonization (ICH), Quality guidelines (ICHQ): https://www.ich.org/page/quality-guidelines, Validation of analytical procedures ICH Q2 (R1, R2), Guideline on analytical procedure development Q14, Accessed 01 Oct 2019

  11. US Food and drug administration FDA PAT guidance, PAT Guidance for industry: https://www.fda.gov/downloads/drugs/guidances/ucm070305.pdf, Process Validation: https://www.fda.gov/downloads/drugs/guidances/ucm070336.pdf, Accessed 01 Oct 2019

  12. K.A. Bakeev (ed.), Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, 2nd ed., (John Wiley and Sons, Chicester, UK, 2010)

    Google Scholar 

  13. R.W. Kessler (ed.), Prozessanalytik- Strategien und Fallbeispiele aus der industriellen Praxis (Wiley – VCH, Weinheim, 2006)

    Google Scholar 

  14. H. Kagermann, R. Anderl, J. Gausemeier, G. Schuh, W. Wahlster (eds.), Industrie 4.0 in a Global Context: Strategies for Cooperating with International Partners (acatech study), Munich (Herbert Utz Verlag, 2016). The original version of this publication is available at www.utzverlag.de or www.acatech.de

  15. Kessler R. W., Perspectives in Process Analysis, J. Chemometrics 2013, 27, 369–378

    Google Scholar 

  16. T. Bieringer, S. Buchholz, N. Kockmann, Future production concepts in the chemical industry: Modular—Small-Scale—Continuous. Chem. Eng. Technol. 36, 900–910 (2013)

    Article  CAS  Google Scholar 

  17. T. Seifert, S. Sievers, C. Bramsiepe, G. Schenbecker, Small scale, modular and continuous: a new approach in plant design. Chem. Eng. Process. 52, 140–150 (2012)

    Article  CAS  Google Scholar 

  18. S. Kern, L. Wander, K. Meyer, S. Guhl, A.R.G. Mukkula, M. Holtkamp, M. Salge, C. Fleischer, N. Weber, R. King, S. Engell, A. Paul, M.P. Remelhe, M. Maiwald, Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals. Anal. Bioanal. Chem. 411, 3037–3046 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. The Industrial Internet of Things Volume G1, Reference Architecture, Version 1.9, June 19, 2019, https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf. Accessed 01 Oct 2019

  20. German standardization roadmap, Industrie 4.0, version 3, 2018 https://www.din.de/blob/65354/57218767bd6da1927b181b9f2a0d5b39/roadmap-i4-0-e-data.pdf, accessed: 2019–10–01

  21. J. Berthold, M. Blazek, M. Deilmann, H. Engelhardt, A. Gasch, M. Gerlach, F. Grümbel, U. Kaiser, M. Kloska, S. Löbbecke, M. Maiwald, T. Pötter, K. Rebner, E. Roos, S. Stieler, D. Stolz, M. Theuer, Technologie-Roadmap 4.0 – Voraussetzungen für die zukünftigen Automatisierungskonzepte. Ed. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA) and NAMUR – Interessengemeinschaft Automatisierungstechnik der Prozessindustrie, Düsseldorf, November 2015. Freely available at: https://www.namur.net/en/work-areas-and-project-groups/wa-3-field-devices/wg-36-analyser-systems.html or: https://www.vdi.de/ueber-uns/presse/publikationen/details/technologie-roadmap-prozesssensoren-40, or: https://www.zvei.org, Accessed 01 Oct 2019

  22. K. Eisen, T. Eifert, C. Herwig, M. Maiwald, Current and future requirements to industrial analytical infrastructure—part 1: process analytical laboratories. Anal. Bioanal. Chem. 412, 2027–2035 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. T. Eifert, K. Eisen, M. Maiwald, C. Herwig, Current and future requirements to industrial analytical infrastructure—part 2: smart sensors. Anal. Bioanal. Chem. 412, 2037–2045 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. G. Engel, T. Greiner, S. Seifert, Ontology-assisted engineering of cyber-physical production systems in the field of process technology. IEEE Trans. Industr. Inf. 14, 2792–2802 (2018)

    Article  Google Scholar 

  25. J. Berthold, D. Imkamp, Looking at the future of manufacturing metrology. J. Sens. Sens. Syst. 2, 1–7 (2013)

    Article  Google Scholar 

  26. K.B. Beć, J. Grabska, H.W. Siesler, C.W. Huck, Handheld near-infrared spectrometers: where are we heading? NIR News, 1–8 (2020). 10.1177/0960336020916815

    Google Scholar 

  27. E. Borras, J. Ferre, R. Boque, M. Mestres, L. Acena, O. Busto, Data fusion methodologies for food and beverage authentication and quality assessment: a review. Anal. Chim. Acta 891, 1–14 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. B.P. Geurts, J. Engel, B. Rafii, L. Blanchet, A. Suppers, E. Szymańska, J.J. Jansen, L.M.C. Buydens, Improving high-dimensional data fusion by exploiting the multivariate advantage. Chemom. Intell. Lab. Syst. 156, 231–240 (2016)

    Article  CAS  Google Scholar 

  29. R.R. de Oliveira, C. Avila, R. Bourne et al., Data fusion strategies to combine sensor and multivariate model outputs for multivariate statistical process control. Anal Bioanal Chem 412, 2151–2163 (2020). https://doi.org/10.1007/s00216-020-02404-2

    Article  CAS  PubMed  Google Scholar 

  30. Industrial Internet Reference Architecture in data analytics, The Industrial Internet of Things Volume T3: Analytics Framework, Internet of things: www.iiconsortium.org, Industrial Analytics Framework: https://www.iiconsortium.org/pdf/IIC_Industrial_Analytics_Framework_Oct_2017.pdf. Accessed 01 Oct 2019

  31. J. Workman Jr., B. Lavine, R. Chrisman, M. Koch, Process analytical chemistry. Anal. Chem. 83, 4557–4578 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. Process analytics in Science and Industry, special edition with more than 20 papers on PAT. Anal. Bioanal. Chem. 409, 629–857 (2017)

    CAS  Google Scholar 

  33. R.W. Kessler, W. Kessler, E. Zikulnig-Rusch, A critical summary of spectroscopic techniques and their robustness in industrial PAT applications. Chem. Ing. Tech. 88, 710–721 (2016)

    Article  CAS  Google Scholar 

  34. L. Rolinger, M. Rüdt, J. Hubbuch, A critical review of recent trends, and a future perspective of optical spectroscopy as PAT in biopharmaceutical downstream processing. Anal. Bioanal. Chem. 412, 2047–2064 (2020). https://doi.org/10.1007/s00216-020-02407-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. P. Williams, P. Dardenne, P. Flinn, Tutorial: Items to be included in a report on a near infrared spectroscopy project. J. Near Infrared Spectro. 25, 85–90 (2017)

    Article  CAS  Google Scholar 

  36. J. Workman Jr., J.L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (FL, CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  37. H.F. Fisher, W.C. McCabe, S. Subramanian, A near-infrared spectroscopic investigation of the effect of temperature on the structure of water. J. Phys. Chem. 74, 4360–4369 (1970)

    Article  CAS  Google Scholar 

  38. K. Buijs, G.R. Choppin, Near-infrared studies of the structure of water. I. Pure Water, J. Chem. Phys. 39, 2035–2041 (1963)

    Google Scholar 

  39. J.-J. Max, P. Larouche, C. Chapados, Orthogonalized H2O and D2O species obtained from infrared spectra of liquid water at several temperatures. J. Mol. Struct. 1149, 457–472 (2017)

    Article  CAS  Google Scholar 

  40. B. Boldrini, W. Kessler, K. Rebner, R.W. Kessler, Hyperspectral imaging: a review of best practice, performance and pitfalls for inline and online applications. J. Near Infrared Spectro. 20, 438–508 (2012)

    Article  Google Scholar 

  41. J. Vessmann, R.I. Stefan, J.F. van Staden, K. Danzer, W. Lindner, D.T. Burns, A. les Fajgelj, H. Müller, Selectivity in analytical chemistry. Pure Appl. Chem. 73, 1381–1386 (2001)

    Google Scholar 

  42. S.M. Short, R.P. Cogdill, C.A. Anderson, Determination of figures of merit for near-infrared and raman spectrometry by net analyte signal analysis for a 4-component solid dosage system. AAPS Pharm. Sci. Tech. 8(109) E1–E11 (2007). https://doi.org/10.1208/pt0804096, or: https://link.springer.com/content/pdf/10.1208%2Fpt0804096.pdf Accessed: 01 Oct 2019

  43. W. Neumann, Fundamentals of Dispersive Optical Spectroscopy Systems (SPIE, Bellingham, WA, 2014)

    Book  Google Scholar 

  44. A.G. Reule, Errors in spectrophotometry and calibration procedures to avoid them. J. Res. National Bur. Stand. Phys. Chem. BOA(4), 609–624 (1976)

    Google Scholar 

  45. H.K. Hughes, Beer’s law and the optimum transmittance in absorption measurements. Appl. Opt. 2, 937–945 (1963)

    Article  Google Scholar 

  46. K.H. Esbensen, P. Geladi, A. Larsen, Concentration is a fixed, immutable property. NIR News 23(5), 16–18 (2012)

    Article  Google Scholar 

  47. R.W. Kessler, Optische Spektroskopie online und inline I: Festkörper und Oberflächen, in Prozessanalytik – Strategien und Fallbeispiele aus der industriellen Praxis, ed. by R.W. Kessler (Wiley-VCH, 2006), chapter 7, pp. 255–287

    Google Scholar 

  48. R.W. Kessler, W. Kessler, On line quality control of thin surface layers on metal sheets by spectral interference in combination with a neural network. J. Process Anal. Chem. 3(4), 84–90 (1998)

    CAS  Google Scholar 

  49. H.H. Safwat, Effect of centrally located samples in the integrating sphere. J. Opt. Soc. Am. 60, 534–541 (1970)

    Google Scholar 

  50. L.M. Hanssen, K.A. Snail, Integrating Spheres for Mid- and Near-infrared Reflection Spectroscopy, Reproduced from: Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, Chichester, 2002). including corrections: https://onlinelibrary.wiley.com/doi/abs/10.1002/0470027320.s2405. Accessed 01 Oct 2019

  51. K. Rebner, W. Kessler, R.W. Kessler, Science based spectral imaging: combining first principles with new technologies, in Near Infrared Spectroscopy: Proceedings of the 14th International Conference, 7.-16.11 2009, Bangkok, Thailand, ed. by Sirinnapa Saranwong, Sumaporn Kasemsumran, Warunee Thanapase and Phil Williams, (IMPublications, Chichester, UK 2010), pp. 919–927, ISBN 978-1-906715-03-8

    Google Scholar 

  52. D. Oelkrug, M. Brun, K. Rebner, B. Boldrini, R. Kessler, Penetration of light into multiple scattering media: model calculations and reflectance experiments. Part I: Axial Trans. Appl. Spectro. 66, 934–943 (2012)

    Google Scholar 

  53. D. Oelkrug, M. Brun, P. Hubner, K. Rebner, B. Boldrini, R. Kessler, Penetration of light into multiple scattering media: model calculations and reflectance experiments. Part II: Radial Trans. Appl. Spectro. 67, 385–395 (2013)

    Google Scholar 

  54. Z. Shi, C. Anderson, Application of monte carlo simulation-based photon migration for enhanced understanding of near-infrared (NIR) diffuse reflectance. Part I: Depth Penetration Pharm. Mater. J. Pharma. Sci. 99, 2399–2412 (2010)

    CAS  Google Scholar 

  55. F. Martelli, An ABC of near infrared photon migration in tissues: the diffusive regime of propagation. J. Near Infrared Spectrosc. 20, 29–42 (2012)

    Article  CAS  Google Scholar 

  56. D.J. Dahm, K.D. Dahm, Formulae for absorption spectroscopy related to idealized cases. J. Near Infrared Spectro. 22, 249–259 (2014)

    Article  CAS  Google Scholar 

  57. S.N. Thennadil, E. Dzhongova, NIR spectroscopy of turbid media: maximizing extractable information using light propagation theory. NIR News 24(5), 12–17 (2013)

    Article  Google Scholar 

  58. Y.-C. Chen, D. Foo, N. Dehanov, S.N. Thennadil, Spatially and angularly resolved spectroscopy for in-situ estimation of concentration and particle size in colloidal suspensions. Anal. Bioanal. Chem. 409, 6975–6988 (2017)

    Article  CAS  PubMed  Google Scholar 

  59. M. Rey-Bayle, R. Bendoula, N. Caillol, J.-M. Roger, Multiangle near infrared spectroscopy associated with common components and specific weights analysis for in line monitoring. J. Near Infrared Spectro. 27, 134–146 (2019)

    Article  CAS  Google Scholar 

  60. W. Kessler, D. Oelkrug, R.W. Kessler, Using scattering and absorption spectra as MCR-hard model constraints for diffuse reflectance measurements of tablets. Anal. Chim. Acta 642, 127–134 (2009)

    Article  CAS  PubMed  Google Scholar 

  61. E. Ostertag, M. Stefanakis, K. Rebner, R.W. Kessler, Elastic and inelastic light scattering spectroscopy and its possible use for label-free brain tumor typing. Anal. Bioanal. Chem. 409, 6613–6623 (2017)

    Article  CAS  PubMed  Google Scholar 

  62. H. Chung, Applications of near-infrared spectroscopy in refineries and important issues to address. Appl. Spectrosc. Rev. 42, 251–285 (2007)

    Article  CAS  Google Scholar 

  63. K. Hidajat, S.M. Chong, Quality characterization of crude oils by partial least square calibration of NIR spectral profiles. J. Near Infrared Spectro. 8, 53–59 (2000)

    Article  CAS  Google Scholar 

  64. OMV Mediendatenbank, omv-mediadatabase.com, and https://www.omv.de/services/downloads/00/omv.de/1522141187364/Raffineriebroschure_DE, Accessed 31 Oct 2019

  65. D. Lambert, K. Benkhelil, B. Ribero, M. Valleur, Advanced crude management by NIR spectroscopy combined with topology modelling, in Hydrocarbon Processing, July 2019, Special Focus: The Digital Refinery, https://www.hydrocarbonprocessing.com/magazine/2019/july-2019/special-focus-the-digital-refinery/advanced-crude-management-by-nir-spectroscopy-combined-with-topology-modeling. Accessed 10 Oct 2019

  66. J.C.A. Alves, C.B. Henriques, R.J. Poppi, Near infrared spectroscopy combined with support vector machines as a process analytical chemistry tool at petroleum refineries. NIR News 23(8), 8–10 (2012)

    Article  Google Scholar 

  67. J. Workman Jr., A review of process near infrared spectroscopy: 1980–1994. J. Near Infrared Spectro. 1, 221–245 (1993)

    Article  CAS  Google Scholar 

  68. Z. Yuan, W. Qin, J. Zhao, Smart manufacturing for the oil refining and petrochemical industry. Engineering 3, 179–182 (2017)

    Article  CAS  Google Scholar 

  69. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3 (Wiley, NY, 2004) 978-0-470-09307-8

    Google Scholar 

  70. L.G. Weyer, S.-C. Lo, Handbook of Vibrational Spectroscopy, ed. By J.M. Chalmers, P. Griffiths (John Wiley & Sons, Chichester, 2002)

    Google Scholar 

  71. T.I. Dearing, J.T. Wesley, C.E. Rechsteiner Jr., B.J. Marquardt, Characterization of crude oil products using data fusion of process Raman, infrared, and nuclear magnetic resonance (NMR) spectra. Appl. Spectro. 65, 181–186 (2011)

    Article  CAS  Google Scholar 

  72. Z. Xu, C.E. Bunker, P.B. de Harrington, Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines. Appl. Spectro. 11, 1251–1258 (2010)

    Article  Google Scholar 

  73. J.C.L. Alves, R.J. Poppi, Diesel oil quality parameter determinations using support vector regression and near infrared spectroscopy for hydrotreating feedstock monitoring. J. Near Infrared Spectro. 20, 419–425 (2012)

    Article  CAS  Google Scholar 

  74. M.V. Reboucas, de B.B. Netob, Near infrared spectroscopic prediction of physical properties of aromatics-rich hydrocarbon mixtures. J. Near Infrared Spectro. 9, 263–273 (2001)

    Google Scholar 

  75. G. Guchardi, da P.A.C. Filho, R.J. Poppi, C. Pasquini, Determination of ethanol and methyl tert-butyl ether (MTBE) in gasoline by NIR–AOTF-based spectroscopy and multiple linear regression with variables selected by genetic algorithm, J. Near Infrared Spectro. 6, 333–339 (1998)

    Google Scholar 

  76. H. Hasheminasab, Y. Gholipour, M. Kharrazi, D. Streimikiene, Life cycle approach in sustainability assessment for petroleum refinery projects with fuzzy-AHP. Energy Environ. 29, 1208–1223 (2018)

    Article  Google Scholar 

  77. H.O.M.A. Moura, A.B.F. Câmara, M.C.D. Santos, C.L.M. Morais, L.A.S. de Lima, K.M.G. Lima, L.S. de Carvalho, Advances in chemometric control of commercial diesel adulteration by kerosene using IR spectroscopy. Anal. Bioanal. Chem. 411, 2301–2315 (2019)

    Article  CAS  PubMed  Google Scholar 

  78. J.C.L. Alves, R.J. Poppi, Quantification of hydrotreated vegetable oil and biodiesel contents in diesel fuel blends using near infrared spectroscopy. NIR News 27, 4–7 (2016)

    Article  Google Scholar 

  79. S. Altinpinar, D. Sorak, H.W. Siesler, Near infrared spectroscopic analysis of hydrocarbon contaminants in soil with a hand-held spectrometer. J. Near Infrared Spectro. 21, 511–521 (2013)

    Article  CAS  Google Scholar 

  80. R.W. Kessler, Projektmanagement für wissensbasierte Produkte und Verfahren, in Prozessanalytik—Strategien und Fallbeispiele aus der industriellen Praxis Wiley-VCH 2006, ed. by R.W. Kessler, chapter 3, pp. 49–76

    Google Scholar 

  81. T. Kourti, Pharmaceutical manufacturing: the role of multivariate analysis in design space, control strategy, process understanding, troubleshooting, and optimization, Chapter 15, in Chemical Engineering in the Pharmaceutical Industry, 2nd Edition, eds. by Mary T. am Ende David J. am Ende, (Wiley Online Library, 2019), pp. 601–629

    Google Scholar 

  82. S.A. Roussel, B. Igne, D.B. Funk, C.R. Hurburgh, Noise robustness comparison for near infrared prediction models. J. Near Infrared Spectro. 19, 23–36 (2011)

    Article  CAS  Google Scholar 

  83. R.W. Kessler, Optische spektroskopie: hardware für die prozessanalytik, in Prozessanalytik – Strategien und Fallbeispiele für die industriellen Praxis, ed. by R.W. Kessler (Wiley-VCH, 2006), chapter 6, pp. 229–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf W. Kessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kessler, R.W., Kessler, W. (2021). Inline and Online Process Analytical Technology with an Outlook for the Petrochemical Industry. In: Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S.B. (eds) Near-Infrared Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-15-8648-4_23

Download citation

Publish with us

Policies and ethics