Skip to main content

Review of Relative Navigation for Noncooperative Spacecraft in Close Range

  • Conference paper
  • First Online:
Proceedings of 2020 Chinese Intelligent Systems Conference (CISC 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 706))

Included in the following conference series:

Abstract

On-orbit Service (OOS) has demonstrated great potential in future space mission. The target in the OOS mission are often noncooperative spacecrafts. The unavailability of the artificial retroflectors and communication link makes it a great challenge to acquire the state of motion of the noncooperative target through relative navigation during the rendzvous in close range. Therefore the relative navigation represents one of the key techniques required for the success for the noncooperative rendezvous. In this article, the main research achievement about the relative navigation in close range for noncooperative spacecraft is reviewed. First, the state-of-art developments of noncooperative OOS projects and corresponding relative navigation scheme are reviewed. Second, the principle and application of different types of the electro-optical sensors are summarized. Third, the pose measurements techniques based on the 2D images and 3D point cloud are investigated respectively. Then, research on the relative navigation filter algorithm are summarized. Finally, the conclusion of this article and recommendation for the further development are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arantes, M.I.G.: Rendezvous with a non-cooperative Target. Master thesis, University Bremen (2011)

    Google Scholar 

  2. King, D.: Hubble robotic servicing: stepping stone for future exploration mission. In: AIAA 1st Space Exploration Conference: Continuing the Voyage of Discovery, pp. 2005–2524. AIAA, Reston (2005)

    Google Scholar 

  3. Thienel, J.K., Sanner, R.M.: Hubble space telescope angular velocity estimation during the robotic servicing mission. J. Guid. Control Dyn. 30, 29–34 (2007)

    Article  Google Scholar 

  4. Richards, R., Tripp, J., Pashin, S., et al.: Advances in automous orbital rendezvous technology: the XSS-11 LIDAR sensor. In: Proceedings of the 57th IAC/IAF/IAA (International Astronautical Congress), Valencia, Spain 2–6 October 2005

    Google Scholar 

  5. Thomas, D., Sean, D.: Overview and performance of the front-end robotics enabling near-term demonstration. In: AIAA Infotech Aerospace Conference, Seattle, USA, 6–9 April 2009

    Google Scholar 

  6. Depeuter, W., Visentin, G., Fehse, W.: Satellite servicing in GEO by robotic service vehicle. ESA Bull.-Eur. Space Agency 7, 22–25 (1994)

    Google Scholar 

  7. Hirzinger, G., Landzettel, K., Brunner, B., et al.: DLRs robotics technologies for on-orbit servicing. Adv. Robot. 18, 139–174 (2004)

    Article  Google Scholar 

  8. Bernd, B.; Kerstein, L. ROGER-robotic geostationary orbit restorer. In: 54th International Astronautical Congress of the International Astronautical Federation, Bremen, Germany (2003)

    Google Scholar 

  9. Rupp, T., Boge, T., Kiehling, R., et al.: Flight dynamics challenges of German on orbit servicing mission. In: International Symposium on Space Flight Dynamics, Toulouse, France, 27 September–2 October 2009

    Google Scholar 

  10. Kaisera, C., Sjöbergb, F., Delcurac, J.M., Eilertsen, B.: SMART-OLEV an orbital life extension vehicle for servicing commercial spacecrafts in GEO. Acta Astronaut. 63, 400–410 (2008)

    Article  Google Scholar 

  11. Khongsab, P.: Signal processing and performance evaluation of a PMD camera for space docking. Ph.D. thesis. Lule University of Technology (2009)

    Google Scholar 

  12. Terui, F., Kamimura, H., Nisida, S.: Motion estimation to a failed satellite on orbit using stereo vison and 3D model matching. In: The 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 5–8 December 2006

    Google Scholar 

  13. Kimura, S., Nagai, Y., Yamamoto, H., et al.: Approach for on orbit maintenance and experiment plan using 150kg class satellites. In: IEEE Aerospace Conference Big Sky, USA, 5–12 March 2005

    Google Scholar 

  14. Nishida, S.I., Kawamoto, S., Okawa, Y., Terui, F., Kitamura, S.: Space debris removal system using a small satellite. Acta Astronaut. 65, 95–102 (2009)

    Article  Google Scholar 

  15. Xu, W.F., Liang, B., Li, C., et al.: Autonomous rendezvous and robotic capturing of non-cooperative target in space. Robotica 28(5), 705–718 (2010)

    Article  Google Scholar 

  16. Rems, F., Risse, E.-A., Benninghoff, H.: Rendezvous GNC-system for autonomous orbital servicing of uncooperative targets. In: GNC 2017: 10th International ESA Conference on Guidance, Navigation and Control System, Salzburg, Austria, 29 May–2 June 2017 (2017)

    Google Scholar 

  17. Liang, B., He, Y., Zou, Y., et al.: Application of time-of-flight camera for relative measurement of non-cooperative target in close range. J. Astronaut. 37(9), 1080–1088 (2016)

    Google Scholar 

  18. Opromolla, R., Fasano, G., Rufino, G., et al.: A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations. Prog. Aerosp. Sci. 93, 53–72 (2017)

    Article  Google Scholar 

  19. Kasai, T., Oda, M., Suzuki, T.: Results of the ETS-7 mission–rendezvous docking and space robotics experiments. In: Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space, ESTEC, Noordwijk, The Netherlands, ESA SP-440, pp. 299–306, June 1999

    Google Scholar 

  20. Rumford, T.E.: Demonstration of autonomous rendezvous technology (DART) project summary. In: Proceedings of SPIE Space Systems and Technology Operations, vol. 5088, August 2003

    Google Scholar 

  21. DAmico, S., Benn, M., Jorgensen, J.L.: Pose estimation of an uncooperative spacecraft from actual space imagery. Int. J. Space Sci. Eng. 2(2), 171–189 (2014)

    Article  Google Scholar 

  22. Naasz, B.J., Burns, R.D., Queen, S.Z.: The HST SM4 relative navigation sensor system: overview and preliminary testing results from the flight robotics lab. J. Astronaut. Sci. 57(1C2), 457–483 (2009)

    Article  Google Scholar 

  23. Liu, C., Hu, W.: Relative pose estimation for cylinder-shaped spacecrafts using single image. IEEE Trans. Aerosp. Electron. Syst. 50(4), 3036–3056 (2014)

    Article  Google Scholar 

  24. Du, X.D., Liang, B., Xu, W.F., et al.: Pose measurement of large non-cooperative satellite based on collaborative cameras. Acta Astronaut. 68(11), 2047–2065 (2011)

    Article  Google Scholar 

  25. Yu, F., He, Z., Qiao, B., et al.: Stereo-vision-based relative pose estimation for the rendezvous and docking of noncooperative satellites. Math. Probl. Eng. (2014)

    Google Scholar 

  26. Ruel, S., English, C., Anctil, M., et al.: 3DLASSO: real-time pose estimation from 3D data for autonomous satellite servicing. In: Proceedings of the 2005 International Symposium on Artificial Intelligence for Robotics and Automation in Space, Munich, Germany, September 2005

    Google Scholar 

  27. English, C., Zhu, S., Smith, C., et al.: Tridar: a hybrid sensor for exploiting the complementary nature of triangulation and LIDAR technologies. In: Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, September 2008

    Google Scholar 

  28. Christian, J.A., Cryan, S.: A survey of LIDAR technology and its use in spacecraft relative navigation. In: Guidance, Navigation and Control and Co-located Conference, Boston, MA, 19–22 August 2013

    Google Scholar 

  29. Lim, T.W.: Point cloud modelling using the homogeneous transformation for non-cooperative pose estimation. Acta Astronaut. 11, 61–76 (2015)

    Article  Google Scholar 

  30. Hao, G.T., Du, X.P.: Advances in optical measurement of position and pose for space non-cooperative target. Laser Optoelectron. Prog. 8, 1–9 (2013)

    Google Scholar 

  31. Joseph, M., John, V., Matt, S., et al.: Pose measurement performance of the argon relative navigation sensor suite in simulated flight conditions, pp. 1–25. American Institute of Aeronautics and Astronautics (2012)

    Google Scholar 

  32. Gao, X.H., Liang, B., Le, P., et al.: A monocular structured light vision method for pose determination of large non-cooperative satellite. Int. J. Control Autom. Syst. 14(6), 1535–1549 (2016)

    Article  Google Scholar 

  33. Song, J.Z., Cao, C.X.: Pose self-measurement of noncooperative spacecraft based on solar panel triangle structure. J. Robot. (2015)

    Google Scholar 

  34. Peng, J.Q., Xu, W.F., Yuan, H.: An efficient pose measurement method of a space non-cooperative target based on stereo vision. IEEE Access 5, 22344–22362 (2017)

    Article  Google Scholar 

  35. Yu, F., He, Z., Qiao, B.: Stereo-vision-based relative pose estimation for the rendezvous and docking of noncooperative satellites. Math. Probl. Eng. (2015)

    Google Scholar 

  36. Sharma, S., DAmico, S.: Comparative assessment of techniques for initial pose estimation using monocular vision. Acta Astronaut. 123(1), 435–445 (2016)

    Article  Google Scholar 

  37. Jasiobedzki, P., Se, S., Pan, T., et al.: Autonomous satellite rendezvous and docking using LIDAR and Model based vision. In: Proceedings of SPIE Spaceborne Sensor II, vol. 5798, June 2005

    Google Scholar 

  38. Sell, J.L.: Pose performance of LIDAR-based relative navigation for non-cooperative objects. Master thesis, West Virginia University (2015)

    Google Scholar 

  39. Ventura, J., Fleischner, A., Walter, U.: Pose tracking of a noncooperative spacecraft during docking maneuvers using a time-of-flight sensor. In: AIAA Guidance, Navigation and Control Conference, AIAA Paper 2016–0875, January 2016

    Google Scholar 

  40. Woods, J.O., Christian, J.A.: LIDAR-based relative navigation with respect to noncooperative objects. Acta Astronaut. 126, 298–311 (2016)

    Article  Google Scholar 

  41. Rhodes, A., Kim, E., Christian, J.A., et al.: LIDAR-based relative navigation of non-cooperative objects using point Cloud Descriptors. In: Proceedings of the 2016 AIAA/AAS Astrodynamics Specialist Conference (2016)

    Google Scholar 

  42. Lichter, M.D., Dubowsky, S.: Estimation of state, shape, and inertial parameters of space objects from sequences of range images. Proceedings of SPIE (2003)

    Google Scholar 

  43. Segal, S., Carmi, A., Gurfil, P.: Stereovision-based estimation of relative dynamics between noncooperative satellites: theory and experiments. IEEE Trans. Control Syst. Technol. 22(2), 568–584 (2014)

    Article  Google Scholar 

  44. Zhang, L.J., Zhang, S.F., Yang, H.B., et al.: Relative attitude and position estimation for a tumbling spacecraft. Aerosp. Sci. Technol. 42, 97–105 (2015)

    Article  Google Scholar 

  45. Sonnenburg, A., Tkocz, M., Janschek, K.: EKF-SLAM based approach for spacecraft rendezvous navigation with unknown target spacecraft. In: 18th IFAC Symposium on Automatic Control in Aerospace, vol. 43, no. 15, pp. 339–344 (2010)

    Google Scholar 

  46. Segal, S., Gurfil, P.: Effect of kinematic rotation-translation coupling on relative spacecraft translational dynamics. J. Guid. Control Dyn. 32(3), 1045–1050 (2009)

    Article  Google Scholar 

  47. Dong, G.Q., Zhu, Z.H.: Autonomous robotic capture of noncooperative target by adaptive extended Kalman filter based visual servo. Acta Astronaut. 122, 209–218 (2016)

    Article  Google Scholar 

  48. Yu, H., Zhang, S.J., Liu, L.Y.: Relative dynamics estimation of non-cooperative spacecraft with unknown orbit elements and inertial tensor. Chin. J. Aeronaut. 29(2), 479–491 (2016)

    Article  Google Scholar 

  49. Pesce, V., Lavagna, M., Bevilacqua, R.: Stereovision-based pose and inertia estimation of unknown and uncooperative space objects. Adv. Space Res. 59(1), 236–251 (2017)

    Article  Google Scholar 

  50. Aghili, F., Parsa, K.: Motion and parameter estimation of space objects using laser-vision data. J. Guid. Control Dyn. 22(2), 537–549 (2009)

    Google Scholar 

  51. Lefferts, E.J., Lefferts, F.L., Shuster, M.D.: Kalman filtering for spacecraft attitude estimation. J. Guid. 5(5), 417–429 (1982)

    Article  Google Scholar 

  52. Tweddle, B.E.: Computer vision-based localization and mapping of an unknown, uncooperative and spinning target for spacecraft proximity operations. Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, MA (2013)

    Google Scholar 

  53. Li, Y.P.: Research on relative position and attitude estimation on non-cooperative spacecraft. Master thesis, Chinese Academy of Space Technology (2016)

    Google Scholar 

  54. Zhang, L.J., Qian, S., Zhang, S.F., et al.: Research on angles-only/SINS/CNS relative position and attitude determination algorithm for a tumbling spacecraft. J. Aerosp. Eng. 231(2), 218–228 (2016)

    Google Scholar 

  55. Hao, G.T., Du, X.P., Chen, H., et al.: Scale-unambiguous relative pose estimation of space uncooperative targets based on the fusion of three-dimensional time-of-flight camera and monocular camera. Opt. Eng. 54, 053112 (2015)

    Article  Google Scholar 

  56. Cao, L., Chen, X.Q.: A novel unscented predictive filter for relative position and attitude estimation of satellite formation. Acta Astronaut. (2014)

    Google Scholar 

  57. Yu, X.T., Yu, F., He, Z.: Stereo vision based relative state estimation for non-cooperative spacecraft with outliers. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014

    Google Scholar 

  58. Hou, X.H., Ma, C., Wang, Z., et al.: Adaptive pose and inertial parameters estimation of free-floating tumbling space objects using dual vector quaternions. Adv. Mech. Eng. 9(10), 1–17 (2017)

    Article  Google Scholar 

  59. Mishra, H.: Designing robust pose estimator for noncooperative space targets for visual servoing during approach maneuvers. Master thesis, Technische Universität München (2016)

    Google Scholar 

  60. Xiong, K., Wei, C.L.: Adaptive iterated extended Kalman filter for relative spacecraft attitude and position estimation. Asian J. Control 20, 1–16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Song, L., Li, Z., Ma, X.R.: A novel position and attitude estimation for space debris. J. Astronaut. 36(8), 906–915 (2015)

    Google Scholar 

  62. Geller, D.K., Klein, I.: Angles-only navigation state observability during orbital proximity operations. J. Guid. Control Dyn. 37(6), 1976–1983 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by National Natural Science Foundation of China (61690215, 61640304, 61573060, 61203093) and National Science Fund for Distinguished Young Scholars (61525301). The author wishes to thank all these that contribute to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, D., Hu, Q., Li, W., Hu, H., Zhang, K. (2021). Review of Relative Navigation for Noncooperative Spacecraft in Close Range. In: Jia, Y., Zhang, W., Fu, Y. (eds) Proceedings of 2020 Chinese Intelligent Systems Conference. CISC 2020. Lecture Notes in Electrical Engineering, vol 706. Springer, Singapore. https://doi.org/10.1007/978-981-15-8458-9_81

Download citation

Publish with us

Policies and ethics