Skip to main content

Automatic Counting System of Red Blood Cells Based on Fourier Ptychographic Microscopy

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 654))

  • 102 Accesses

Abstract

Red blood cell (RBC) counting is of great medical significance in clinical examination. Commonly, the cell counting task is completed by microscopic examination, which requires a high resolution. This paper proposes an automatic counting system of red blood cells based on Fourier ptychographic microscopy (FPM) and estimates the RBC number via a convolutional neural network (CNN). The counting network is based on a regression model, using a VGG-16 network combined with a feature pyramid network (FPN). The experimental results show that the mean absolute percentage error (MAPE) of our counting network can reach 0.86%, which means a high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bian L, Suo J, Zheng G et al (2015) Fourier ptychographic reconstruction using Wirtinger flow optimization. Opt Express 23(4):4856–4866

    Article  Google Scholar 

  2. Dong S, Shiradkar R, Nanda P et al (2014) Spectral multiplexing and coherent-state decom-position in Fourier ptychographic imaging. Biomed Opt Express 5(6):1757–1767

    Article  Google Scholar 

  3. Konda PC, Taylor JM, Harvey AR et al (2018) Parallelized aperture synthesis using multi-aperture Fourier ptychographic microscopy. arXiv: Optics

    Google Scholar 

  4. Lempitsky V, Zisserman A (2010) Learning to count objects in images. Neural information processing systems (NIPS). Curran Associates Inc., Vancouver, pp 1324–1332

    Google Scholar 

  5. Li Z, Zhang J, Wang X et al (2014) High resolution integral holography using Fourier ptychographic approach. Opt Express 22(26):31935–31947

    Article  Google Scholar 

  6. Lin T, Dollar P, Girshick R et al (2017) Feature pyramid networks for object detection. IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Honolulu, pp 936–944

    Google Scholar 

  7. Mazalan SM, Mahmood NH, Razak MA et al (2013) Automated red blood cells counting in peripheral blood smear image using circular Hough transform. International conference on artificial intelligence, modelling and simulation. IEEE, Kota Kinabalu, pp 320–324

    Google Scholar 

  8. Ou X, Zheng G, Yang C (2014) Embedded pupil function recovery for Fourier ptychographic microscopy. Opt Express 22(5):4960–4972

    Article  Google Scholar 

  9. Pacheco S, Zheng G, Liang R (2016) Reflective Fourier ptychography. J Biomed Opt 21(2):026010.1–026010.6

    Google Scholar 

  10. Reddy VH (2014) Automatic red blood cell and white blood cell counting for telemedicine system. Int J Res Advent Technol 2(1)

    Google Scholar 

  11. Sharif JM, Miswan MF, Ngadi MA et al (2012) Red blood cell segmentation using masking and watershed algorithm: a preliminary study. International conference on biomedical engineering (ICoBE). IEEE, Penang, pp 258–262

    Google Scholar 

  12. Tian L, Waller L (2014) Illumination coding for fast Fourier Ptychography with large field-of-view and high-resolution. In: Frontiers in optics. Optical Society of America, Tucson, pp FW1E-7

    Google Scholar 

  13. Tulsani H, Saxena S, Yadav N (2013) Segmentation using morphological watershed transformation for counting blood cells. IJCAIT 2(3):28–36

    Google Scholar 

  14. Xie Y, Xing F, Kong X et al (2015) Beyond classification: structured regression for robust cell detection using convolutional neural network. International conference on medical image computing and computer-assisted intervention (MICCAI). Springer, Cham, Munich, pp 358–365

    Google Scholar 

  15. Xue Y, Ray N, Hugh J et al (2016) Cell counting by regression using convolutional neural network. European conference on computer vision (ECCV). Springer, Cham, pp 274–290

    Google Scholar 

  16. Yeh LH, Dong J, Zhong J et al (2015) Experimental robustness of Fourier ptychography phase retrieval algorithms. Opt Express 23(26):33214–33240

    Article  Google Scholar 

  17. Zhang Y, Zhou D, Chen S et al (2016) Single-image crowd counting via multi-column convolutional neural network. IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Las Vegas, pp 589–597

    Google Scholar 

  18. Zheng G, Horstmeyer R, Yang C (2013) Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photonics 7(9):739–745

    Article  Google Scholar 

  19. Zhou Y, Wu J, Bian Z et al (2016) Wavelength multiplexed Fourier ptychograhic microscopy. In: Computational optical sensing and imaging. Optical Society of America, Heidelberg, pp CT2D-4

    Google Scholar 

Download references

Acknowledgements

This work was supported by Key Laboratory Foundation under Grant TCGZ2020C004

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingfa Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Xu, T., Zhang, J., Wang, X., Chen, Y., Zhang, J. (2021). Automatic Counting System of Red Blood Cells Based on Fourier Ptychographic Microscopy. In: Liang, Q., Wang, W., Liu, X., Na, Z., Li, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2020. Lecture Notes in Electrical Engineering, vol 654. Springer, Singapore. https://doi.org/10.1007/978-981-15-8411-4_119

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8411-4_119

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8410-7

  • Online ISBN: 978-981-15-8411-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics