Skip to main content

Abstract

Steroid hormones are associated with the regulation of various processes in fish, like embryonic development, sex differentiation, metabolism, immune responses, circadian rhythms, stress response, and reproduction. Steroids in fish are generally classified into C21, C19, and C18 steroids based on their structure. These steroids like estrogens and androgens are used in fish farming to increase fish production based on sexual dimorphism. Progesterone (P4), 17,20β-dihydroxy-4-pregnen-3-one (17,20βP or MIH or DHP), 17,20β,21-trihydroxy-4-pregnen-3-one (20βS) and 11-deoxycortisol (S) are some of the major C21 steroids that are essential for gonadal maturation and production of other endogenous steroids. The C19 steroids, i.e. testosterone (T), 17α-Methyltestosterone (MT), and 11-Ketotestosterone (11-KT) classified as androgens help in fish spermatogenesis and C18 steroids, called as Estranes, are known as female hormones. Except for the role of steroids in fish reproduction they have a major role in immunity, puberty, and stress. Corticosteroids, a major C21 steroid, are associated with stress response in fish. Steroids like, 17β-estradiol (E2), 11KT, medroxyprogesterone, 17α,20β-dihydroxy-4-pregnen-3-one (DHP), are associated with fish adaptive and innate immunity response. Similarly, 11KT is a major steroid for fish puberty. At present, further insights are required in the field of synthetic steroids in fish and their impacts over various roles in fish physiology and future economic importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Borg, B. (1994). Androgens in teleost fishes. Comparative Biochemistry and Physiology, 109C, 219–245.

    CAS  Google Scholar 

  • Busby, E. R., Roch, G. J., & Sherwood, N. M. (2010). Endocrinology of zebrafish: A small fish with a large gene pool. Fish Physiology, 29, 173–247.

    Article  Google Scholar 

  • Cavaco, J. E. B., Vilrokx, C., Trudeau, V. L., Schulz, R. W., & Goos, H. J. (1998). Sex steroids and the initiation of puberty in male African catfish (Clarias gariepinus). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 275(6), R1793–R1802.

    Article  CAS  Google Scholar 

  • Chaves-Pozo, E., García-Ayala, A., & Cabas, I. (2018). Effects of sex steroids on fish leukocytes. Biology (Basel), 7: 9.

    Google Scholar 

  • Guzmán, J. M., Luckenbach, J. A., Yamamoto, Y., & Swanson, P. (2014). Expression profiles of Fsh-regulated ovarian genes during oogenesis in coho salmon. PLoS One, 9(12), e114176.

    Article  Google Scholar 

  • Hammes, S. R., & Levin, E. R. (2007). Extranuclear steroid receptors: Nature and actions. Endocrine Reviews, 28(7), 726–741.

    Article  CAS  Google Scholar 

  • Kime, D. E. (1993). Classical’ and ‘non-classical’ reproductive steroids in fish. Reviews in Fish Biology and Fisheries, 3, 160–180.

    Article  Google Scholar 

  • Mananós, E., Duncan, N., & Mylonas, C. C. (2008). Reproduction and control of ovulation spermiation and spawning in cultured fish. In E. Cabrita, V. Robles, & P. Herráez (Eds.), Methods in reproductive aquaculture: Marine and freshwater species (pp. 3–80). Boca Raton: CRC Press.

    Google Scholar 

  • Miura, T., Miura, C., Konda, Y., & Yamauchi, K. (2002). Spermatogenesis-preventing substance in Japanese eel. Development, 129, 2689–2697.

    CAS  PubMed  Google Scholar 

  • Miura, T., Miura, C., Yamauchi, K., & Nagahama, Y. (1995). Human recombinant activin induces proliferation of spermatogonia in vitro in the Japanese eel (Anguilla japonica). Fisheries Science, 61, 434–437.

    Article  CAS  Google Scholar 

  • Nagahama, Y., & Yamashita, M. (2008). Regulation of oocyte maturation in fish. Development, Growth & Differentiation., 50(Suppl. 1), S195–S219. https://doi.org/10.1111/j.1440-169X.2008.01019.x.

    Article  CAS  Google Scholar 

  • Ogino, Y., Miyagawa, S., & Iguchi, T. (2016). Subchapter 94C—17,20β,21-Trihydroxy-4-pregnen-3-one. In Y. Takei, H. Ando, & K. Tsutsui (Eds.), (2015), Handbook of hormones: Comparative endocrinology for basic and clinical research (pp. 511–512). Academic Press.

    Google Scholar 

  • Okuzawa, K. (2002). Puberty in teleosts. Fish Physiology and Biochemistry, 26, 31–41.

    Article  CAS  Google Scholar 

  • Rather, M. A., Bhat, I. A., Sharma, N., Sharma, R., Chaudhari, A., & Sundaray, J. K. (2016). Molecular characterization, tissue distribution of Follicle-Stimulating Hormone (FSH) beta subunit and effect of kisspeptin-10 on reproductive hormonal profile of Catla catla (Hamilton, 1822). Aquaculture Research, 47(7), 2089–2100.

    Article  CAS  Google Scholar 

  • Ruiz-Jarabo, I., Barragán-Méndez, C., Jerez-Cepa, I., Fernández-Castro, M., Sobrino, I., Mancera, J. M., et al. (2019). Plasma 1α-hydroxycorticosterone as biomarker for acute stress in catsharks (Scyliorhinus canicula). Frontiers in Physiology, 10, 1217.

    Article  Google Scholar 

  • Schulz, R. W., de França, L. R., Lareyre, J. J., LeGac, F., Garcia, H. C., Nobrega, R. H., et al. (2010). Spermatogenesis in fish. General and Comparative Endocrinology, 165(3), 390–411.

    Article  CAS  Google Scholar 

  • Sundararaj, B. I., Anand, T. C., & Donaldson, E. M. (1972). Effects of partially purified salmon pituitary gonadotropin on ovarian maintenenace, ovulation, and vitellogenesis in the hypophysectomized catfish, Heteropneustes fossilis (Bloch). General and Comparative Endocrinology, 18, 102–114.

    Article  CAS  Google Scholar 

  • Taranger, G. L., Carrillo, M., Rüdiger, W., Fontaine, S. P., Zanuy, S., Felip, A., et al. (2010). Control of puberty in farmed fish. General and Comparative Endocrinology, 165(3), 483–515.

    Article  CAS  Google Scholar 

  • Tokarz, J., Möller, G., de Angelis, M. H., & Adamski, J. (2015). Steroids in teleost fishes: A functional point of view. Steroids, 103, 123–144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janmejay Parhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathy, P.S., Parhi, J., Mandal, S.C. (2021). Steroids and Its Receptors in Fish Reproduction. In: Sundaray, J.K., Rather, M.A., Kumar, S., Agarwal, D. (eds) Recent updates in molecular Endocrinology and Reproductive Physiology of Fish. Springer, Singapore. https://doi.org/10.1007/978-981-15-8369-8_4

Download citation

Publish with us

Policies and ethics