Skip to main content

Surface Stress Effects in Nanostructured Si Anode Particles of Lithium-ion Batteries

  • Conference paper
  • First Online:
Recent Advances in Computational Mechanics and Simulations

Abstract

The rising demands for high energy storage systems with greater energy and power densities than the current, commercial ones, have moved our interest toward low-weight electrode materials. Silicon, with a very high theoretical capacity of 4200 mAh/g, is the best replacement for conventionally used graphite (372 mAh/g) as the anode material for lithium-ion batteries (LiBs). The drawback associated with the usage of silicon is that, in a fully lithiated state, silicon expands volumetrically up to more than three times its original volume. The advancement in manufacturing technology has given the researchers the required impetus for exploring and exploiting the various rewards of nano-technology. The use of nanostructured Si anode particles evades few major problems satisfactorily, without compromising with the capacity of the battery. As we venture into the lower dimensions, the ratio of surface to volume increases and hence, the surface effects become more prominent. The present work caters to developing a surface stress formulation for the specific case of an annular/hollow cylindrical silicon anode particle. The formulation is validated with the pre-established results examining the effects of surface stress on diffusion-induced stresses in anodes consisting of spherical nanoparticles. It has been observed that surface stresses have a relaxing effect on bulk stresses. Here, relaxation refers to a shift in the stress trends in the negative (compressive) direction. With a decrease in the initial size (radius of curvature) of the cylindrical particles, the surface stress increases, thus increasing the extent of this relaxation. It is further affected by the rate of influx of lithium atoms. With an increase in the influx rate, surface stress increases. The surface stresses also affect the plastic stretches occurring in a particle, beyond the yield stress limit. Although the present discussion is limited to the context of lithium-ion batteries, the formulation can be generalized to assess the surface stress effects in axisymmetric nanostructured particles in any chemo-mechanical environment, undergoing finite deformation.

The original version of this chapter was revised: The chapter title “Surface Stress-induced Degradation of Electrochemical Performance of Cylindrical Silicon Anode Particles in Li-ion Batteries” has now been replaced with “Surface stress effects in nanostructured Si anode particles of Lithium-ion batteries”. The correction to this chapter can be found at https://doi.org/10.1007/978-981-15-8315-5_56

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 27 March 2021

    In the original version of the book, the title of Chapter has been changed from “Surface Stress-induced Degradation of Electrochemical Performance of Cylindrical Silicon Anode Particles in Li-ion Batteries” to “Surface stress effects in nanostructured Si anode particles of Lithium-ion batteries”. The erratum chapter and the book have been updated with the change.

References

  1. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol. 1. Green and Company, Longmans (1906)

    Google Scholar 

  2. Shuttleworth, R.: Proceedings of the physical society. Sect. A 63(5), 444 (1950)

    Google Scholar 

  3. Gurtin, M.E., Murdoch, A.I.: Arch. Ration. Mech. Anal. 57(4), 291 (1975)

    Article  Google Scholar 

  4. Miller, R.E., Shenoy, V.B.: Nanotechnology 11(3), 139 (2000)

    Article  Google Scholar 

  5. Cammarata, R.C.: Prog. Surf. Sci. 46(1), 1 (1994)

    Article  Google Scholar 

  6. Sharma, P., Ganti, S., Bhate, N.: Appl. Phys. Lett. 82(4), 535 (2003)

    Article  Google Scholar 

  7. Papastavrou, A., Steinmann, P., Kuhl, E.: J. Mech. Phys. Solids 61(6), 1446 (2013)

    Article  MathSciNet  Google Scholar 

  8. McBride, A., Javili, A., Steinmann, P., Bargmann, S.: J. Mech. Phys. Solids 59(10), 2116 (2011)

    Article  MathSciNet  Google Scholar 

  9. Cheng, Y.T., Verbrugge, M.W.: J. Appl. Phys. 104(8), 083521 (2008)

    Article  Google Scholar 

  10. Yang, F.: J. Appl. Phys. 108(7), 073536 (2010)

    Article  Google Scholar 

  11. Deshpande, R., Cheng, Y.T., Verbrugge, M.W.: J. Power Sources 195(15), 5081 (2010)

    Article  Google Scholar 

  12. Hao, F., Gao, X., Fang, D.: J. Appl. Phys. 112(10), 103507 (2012)

    Article  Google Scholar 

  13. Stein, P., Zhao, Y., Xu, B.X.: J. Power Sources 332, 154 (2016)

    Article  Google Scholar 

  14. Liu, W., Shen, S.: Acta Mech. 229(1), 133 (2018)

    Article  MathSciNet  Google Scholar 

  15. Lu, Y., Zhang, P., Wang, F., Zhang, K., Zhao, X.: Electrochim. Acta 274, 359 (2018)

    Article  Google Scholar 

  16. Bower, A.F., Guduru, P.R., Sethuraman, V.A.: J. Mech. Phys. Solids 59(4), 804 (2011)

    Article  MathSciNet  Google Scholar 

  17. Cui, Z., Gao, F., Qu, J.: J. Mech. Phys. Solids 60(7), 1280 (2012)

    Article  MathSciNet  Google Scholar 

  18. Chakraborty, J., Please, C.P., Goriely, A., Chapman, S.J.: Int. J. Solids Struct. 54, 66 (2015)

    Article  Google Scholar 

  19. Zhao, K., Pharr, M., Cai, S., Vlassak, J.J., Suo, Z.: J. Am. Ceram. Soc. 94, s1 (2011)

    Article  Google Scholar 

  20. Neogi, S., Chakraborty, J.: J. Appl. Phys. 124(15), 154302 (2018). https://doi.org/10.1063/1.5052236

    Article  Google Scholar 

  21. Sengupta, A., Chakraborty, J.: Acta Mechanica, pp. 1–21 (2019). https://doi.org/10.1007/s00707-019-02550-4

  22. Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., Wang, J.W., et al.: Nano Lett. 11(8), 3312 (2011)

    Article  Google Scholar 

  23. Rhodes, K., Dudney, N., Lara-Curzio, E., Daniel, C.: J. Electrochem. Soc. 157(12), A1354 (2010)

    Article  Google Scholar 

  24. Haftbaradaran, H., Song, J., Curtin, W., Gao, H.: J. Power Sources 196(1), 361 (2011)

    Article  Google Scholar 

  25. Bucci, G., Nadimpalli, S.P., Sethuraman, V.A., Bower, A.F., Guduru, P.R.: J. Mech. Phys. Solids 62, 276 (2014)

    Article  Google Scholar 

  26. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: J. Biomech. 27(4), 455 (1994)

    Article  Google Scholar 

  27. Huang, Z., Wang, J.X.: Acta Mech. 182(3–4), 195 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sengupta, A., Das, S., Chakraborty, J. (2021). Surface Stress Effects in Nanostructured Si Anode Particles of Lithium-ion Batteries. In: Saha, S.K., Mukherjee, M. (eds) Recent Advances in Computational Mechanics and Simulations. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-8315-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8315-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8314-8

  • Online ISBN: 978-981-15-8315-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics