Skip to main content

Magnetic Nanomaterials and Their Biomedical Applications

  • Chapter
  • First Online:
Nanostructured Materials and their Applications

Abstract

With the arrival of nano-magnetism, a new dimension of advancement possibilities in the field of electrical engineering, electronics, optics, information technology, biomedical applications, etc. has been dawned upon us. In this chapter, we will start briefly discussing Magnetic materials, Nano-magnetism and the main features dominating magnetic properties of nanoparticles (MNPs) As magnetic properties of MNPs determine their fields of application, our concern in this chapter is also to introduce factors that need to be tuned for biomedical application. Later in application section, basic working principle, interaction between magnetic nanomaterial and static or alternating magnetic field, physical and chemical properties of MNPs preferred for particular application, and scope of improvisation have been briefed. Biomedical applications discussed here includes Targeted Drug delivery, Magnetic Bio-separation, Magnetic hyperthermia, MRI contrast enhancement, and Theragnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephenson, C., Hubler, A.: Stability and Conductivity of Self Assembled Wires in a Transverse Electric Field. National Publishing Group, pp. 1–9 (2015). https://doi.org/10.1038/srep15044

  2. Lyon, D., Hubler, A.: Gap size dependence of the dielectric strength in nano vacuum gaps. IEEE Trans. Dielectr. Electr. Insul. 20, 1467–1471 (2013)

    Google Scholar 

  3. Mathew, D.S., Juang, R.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007). https://doi.org/10.1016/j.cej.2006.11.001

  4. Chaudhury, K., Kumar, V., Kandasamy, J., RoyChoudhury, S.: Regenerative nanomedicine: current perspectives and future directions. Int. J. Nanomed. 9, 4153–4167 (2014)

    Article  Google Scholar 

  5. Giustini, A.J., Hoopes, P.J.: Magnetic nanoparticle hyperthermia in cancer treatment, 1, 17–32 (2010). 10.1142/S1793984410000067

    Google Scholar 

  6. Filippousi, M., Angelakeris, M., Katsikini, M., Paloura, E.C., Wang, Y., Zamboulis, D., Van Tendeloo, G., Wang, Y., Zamboulis, D., Van Tendeloo, G.: Surfactant effects on the structural and on the magnetic properties of iron oxide nanoparticles nanoparticles . J. Phys. Chem. (2014). https://doi.org/10.1021/jp5037266

    Article  Google Scholar 

  7. Wang, Y.J., Xuan, S., Port, M., Idee, J.: Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research, 6575–6593 (2013)

    Google Scholar 

  8. Henner, V.K., Yukalov, V.I., Kharebov, P.V., Yukalova, E.P.: Collective spin dynamics in magnetic nanomaterials. J. Phys. Conf. Ser. 129 (2008). https://doi.org/10.1088/1742-6596/129/1/012015.

  9. O’Handley, R.C.: Modern Magnetic Materials. Wiley, New York (2000)

    Google Scholar 

  10. Taylor, P.: Annals of science understanding macroscopic quantum phenomena: the history of superfluidity 1941–1955 understanding macroscopic quantum phenomena: the history of superfluidity 1941–1955, 37–41 (1955). https://doi.org/10.1080/00033798800200291

  11. Neel, L.: Antiferromagnetism and ferrimagnetism. Proc. Phys. Soc. 65 (1952)

    Google Scholar 

  12. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley, New York (2009)

    Google Scholar 

  13. Jaeger, G.: Macroscopic realism and quantum measurement : measurers as a natural kind . Phys. Scripta (2014). https://doi.org/10.1088/0031-8949/2014/T163/014017

    Article  Google Scholar 

  14. Frenkel, J., J., Doefman, ©, : Spontaneous and Induced Magnetisation in Ferromagnetic Bodies. Nat. Publ. Group Nat. 126(1930), 274–275 (1930)

    Google Scholar 

  15. Saikia, D., Borah, J.P.: Ferromagnetic ordering inchemically synthesized ZnS: Mn diluted magnetic semiconductor: a density functional theory explanation. Phys. Lett. A. 1, 2–5 (2017). https://doi.org/10.1016/j.physleta.2017.09.018

    Article  CAS  Google Scholar 

  16. Grasset, F., Duguet, E.: Magnetic Nanoparticle Design for Medical Diagnosis and Therapy, pp. 2161–2175, (2004)

    Google Scholar 

  17. Mosayebi, J., Kiyasatfar, M., Laurent, S.: Synthesis, Functionalization , and Design of Magnetic Nanoparticles for Theranostic Applications (2017). https://doi.org/10.1002/adhm.201700306.

  18. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: 11Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, 167–181 (2003). https://doi.org/10.1088/0022-3727/36/13/201

    Article  Google Scholar 

  19. Blanco-andujar, C.: Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia (2016)

    Google Scholar 

  20. Torres, T.E., Mayoral, E.L. Jr., Ibarra, A., Marquina, C., Ibarra, M.R., Goya, G.F., Torres, T.E., Lima, E., Mayoral, A., Ibarra, A., Marquina, C., Ibarra, M.R.: el-Arrhenius model for highly anisotropic CoxFe32 x O4 Validity of the N e nanoparticles, 183902 (2015). https://doi.org/10.1063/1.4935146

  21. Martins, P., Silva, M.: Determination of the Magnetostrictive Response of Nanoparticles Via Magnetoelectric Measurements, 9457–9461 (2015). https://doi.org/10.1039/c5nr01397f

  22. Liu, X., Liu, J., Zhang, S., Nan, Z., Shi, Q.: Structural, Magnetic, and Thermodynamic Evolutions of Zn-Doped Fe3O4 Nanoparticles Synthesized Using a One-Step Solvothermal Method (2016). https://doi.org/10.1021/acs.jpcc.5b10618

  23. Lu, A., Salabas, E.L., Schüth, F.: Magnetic Nanoparticles: Synthesis , Protection, Functionalization , and Application Angewandte, 1222–1244 (2007). https://doi.org/10.1002/anie.200602866

  24. Batlle, X.: Am´ılcar Labarta, Finite-size effects in fine particles : magnetic and transport properties. J. Phys. D Appl. Phys. 35, R15–R42 (2002)

    Article  CAS  Google Scholar 

  25. Johannsen, M., Gneveckow, U., Eckelt, L., Feussner, A., Waldöfner, N., Scholz, R., Deger, S., Wust, P., Loening, S.A., Jordan, A.: Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperth. 21, 637–647 (2005). https://doi.org/10.1080/02656730500158360

    Article  CAS  Google Scholar 

  26. Chosy, E.J., Nakamura, M., Melnik, K., Comella, K., Lasky, L.C., Zborowski, M., Chalmers, J.J.: Characterization of antibody binding to three cancer-related antigens using flow cytometry and cell tracking velocimetry . Biotech. Bioeng. (2003). https://doi.org/10.1002/bit.10581

    Article  Google Scholar 

  27. Assa, F., Jafarizadeh-malmiri, H., Ajamein, H., Vaghari, H., Anarjan, N., Ahmadi, O., Berenjian, A.: Critical Reviews in Biotechnology Chitosan magnetic Nanoparticles for Drug Delivery Systems, 8551 (2016). https://doi.org/10.1080/07388551.2016.1185389.

  28. Maeda, M., Kuroda, C.S., Shimura, T., Tada, M., Abe, M., Yamamuro, S., Sumiyama, K., Handa, H., Maeda, M., Kuroda, C.S., Shimura, T., Tada, M., Abe, M.: Magnetic carriers of iron nanoparticles coated with a functional polymer for high throughput bioscreening magnetic carriers of iron nanoparticles coated with a functional polymer for high throughput bioscreening. J. Appl. Phys. 103, 97–100 (2010). https://doi.org/10.1063/1.2165127

    Article  CAS  Google Scholar 

  29. Cregg, P.J., Murphy, K., Mardinoglu, A.: Inclusion of interactions in mathematical modelling of implant assisted magnetic drug targeting. Appl. Math. Model. 36, 1–34 (2012). https://doi.org/10.1016/j.apm.2011.05.036

    Article  Google Scholar 

  30. Mou, X., Ali, Z., Li, S., He, N.: Applications of Magnetic Nanoparticles in Targeted Drug Delivery System, 54–62 (2015). https://doi.org/10.1166/jnn.2015.9585

  31. Hola, K., Markova, Z., Zoppellaro, G., Tucek, J., Zboril, R.: Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. (2015). https://doi.org/10.1016/j.biotechadv.2015.02.003

    Article  Google Scholar 

  32. Tai, L., Tsai, P., Wang, Y., Wang, Y.: Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable, 135101 (2009). https://doi.org/10.1088/0957-4484/20/13/135101

  33. Nemati, Z., Salili, S.M., Alonso, J., Ataie, A., Das, R., Phan, M.H., Srikanth, H.: Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: does size matter? J. Alloys Compd. 714, 709–714 (2017). https://doi.org/10.1016/j.jallcom.2017.04.211

    Article  CAS  Google Scholar 

  34. Mcbain, S.C.: Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed. 3, 169–180 (2008)

    CAS  Google Scholar 

  35. Arriortua, A.O.K., Insausti, M., Lezama, L., De Muro, I.G., Garaio, E., Mart, J., Fratila, R.M., Morales, M.P., Eceiza, M., Sagartzazu-aizpurua, M., Jesus, M.: RGD-Functionalized Fe3O4 nanoparticles for magnetic hyperthermia. Colloids Surf. B Biointerfaces (2018). https://doi.org/10.1016/j.colsurfb.2018.02.031

    Article  Google Scholar 

  36. Davis, M.E., Chen, Z.G., Shin, D.M.: Nanoparticle therapeutics: an emerging treatment modality for cancer. Coll. Rev. Nat. J. 7, 771–782 (2008). https://doi.org/10.1038/nrd2614

    Article  CAS  Google Scholar 

  37. Venturoli, D., Rippe, B.: Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge , and deformability, 605–613 (2005). https://doi.org/10.1152/ajprenal.00171.2004

  38. Hu-lieskovan, S., Heidel, J.D., Bartlett, D.W., Davis, M.E., Triche, T.J.: Sequence-Specific Knockdown of EWS-FLI1 by Targeted, Nonviral Delivery of Small Interfering RNA Inhibits Tumor Growth in a Murine Model of Metastatic Ewing ’ s Sarcoma, 8984–8993 (2005). https://doi.org/10.1158/0008-5472.CAN-05-0565

  39. Allen, T.M., Hansen, C.: Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochem. Biophys. Acta Biomembr. 1068, 133–141 (1991)

    Article  CAS  Google Scholar 

  40. Wu, A., Ou, P., Zeng, L.: Biomedical applications of magnetic nanoparticles 5, 245–270 (2010). https://doi.org/10.1142/S1793292010002165

    Article  CAS  Google Scholar 

  41. Safarik, I., Safarikova, M.: Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn. Res. Technol. 17, 1–18 (2004). https://doi.org/10.1186/1477-044X-2-7

    Article  Google Scholar 

  42. Nguyen, D.T., Kim, K.: Functionalization of magnetic nanoparticles for biomedical applications. Kor. J. Chem. Eng. 31, 1289–1305 (2014). https://doi.org/10.1007/s11814-014-0156-6

    Article  CAS  Google Scholar 

  43. Jeong, B.U., Teng, X., Wang, Y., Yang, H., Xia, Y.: Superparamagnetic Colloids: Controlled Synthesis and Niche Applications, 33–60 (2007). https://doi.org/10.1002/adma.200600674

  44. Fatima, H., Kim, K.: Magnetic nanoparticles for bioseparation. Kor. J. Chem. Eng. 32, 1–11 (2016). https://doi.org/10.1007/s11814-016-0349-2

    Article  CAS  Google Scholar 

  45. Erathodiyil, N., Ying, J.Y.: Bioimaging Applications 44, 925–935 (2011). https://doi.org/10.1021/ar2000327

    Article  CAS  Google Scholar 

  46. Chen, Y., Yin, Q., Ji, X., Zhang, S., Chen, H., Zheng, Y., Sun, Y., Qu, H., Wang, Z., Li, Y., Wang, X., Zhang, K., Zhang, L., Shi, J.: Biomaterials Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 33, 7126–7137 (2012). https://doi.org/10.1016/j.biomaterials.2012.06.059

    Article  CAS  Google Scholar 

  47. Wang, Y.A., Li, J.J., Chen, H., Peng, X.: Stabilization of inorganic nanocrystals by organic dendrons. J. Am. Chem. Soc. 124, 2293–2298 (2002)

    Article  CAS  Google Scholar 

  48. Hussain, I., Nichols, R.J., Schiffrin, D.J., Brust, M., Fernig, D.G.: Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles, 10076–10084 (2004)

    Google Scholar 

  49. Gao, X., Chan, W.C.W.: Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 7, 532–537 (2002). https://doi.org/10.1117/1.1506706

    Article  CAS  Google Scholar 

  50. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A., Global cancer statistics, : GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 68(2018), 394–424 (2018). https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  51. Koltai, T. : Cancer: fundamentals behind pH targeting and the double-edged approach, 6343–6360 (2016)

    Google Scholar 

  52. Habash, R.W.Y., Bansal, R., Krewski, D., Alhafid, H.T.: Thermal Therapy, Part 2: Hyperthermia Techniques, vol. 34, pp. 491–542 (2006)

    Google Scholar 

  53. Habash, R.W.Y., Bansal, R., Krewski, D., Alhafid, H.T.: Thermal Therapy, Part 1: An Introduction to Thermal Therapy, vol. 34, 459–489 (2006)

    Google Scholar 

  54. Gilchrist, R.K., Medal, W.D., Shorey, R.C., Hanselman, J.C., Parrott., Taylor, C.B: Selective inductive heating of lymph nodes. Ann. Surg. 146, 596–606 (1957). https://www.ncbi.nlm.nih.gov/pubmed/13470751%0Ahttps://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1450524

    Google Scholar 

  55. Mazarío, E., Sánchez-Marcos, J., Menéndez, N., Cañete, M., Mayoral, A., Rivera-Fernández, S., De La Fuente, J.M., Herrasti, P.: High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route. J. Phys. Chem. C. 119 (2015). https://doi.org/10.1021/jp510937r

  56. Kumar, C.S.S.R., Mohammad, F.: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011). https://doi.org/10.1016/j.addr.2011.03.008

    Article  CAS  Google Scholar 

  57. Hergt, R., Dutz, S., Robert, M., Zeisberger, M.: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, 2919 (2006). https://doi.org/10.1088/0953-8984/18/38/S26

  58. Hergt, R., Andr, W., Ambly, C.G., Hilger, I., Kaiser, W.A., Richter, U., Schmidt, H.: Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn. 34, 3745–3754 (1998)

    Article  CAS  Google Scholar 

  59. Rosensweig, R.E.: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002)

    Article  CAS  Google Scholar 

  60. Lahiri, B.B., Ranoo, S., Zaibudeen, A.W., Philip, J.: Magnetic hyperthermia in magnetic nanoemulsions: Effects of polydispersity, particle concentration and medium viscosity. J. Magn. Magn. Mater. 441, 310–327 (2017). https://doi.org/10.1016/j.jmmm.2017.05.076

    Article  CAS  Google Scholar 

  61. Lahiri, B.B., Muthukumaran, T., Philip, J.: Magnetic hyperthermia in phosphate coated iron oxide nanofluids. J. Magn. Magn. Mater. 407, 101–113 (2016). https://doi.org/10.1016/j.jmmm.2016.01.044

    Article  CAS  Google Scholar 

  62. Hsieh, S., Huang, B.Y., Hsieh, S.L., Wu, C.C., Wu, C.H., Lin, P.Y., Huang, Y.S., Chang, C.W.: Green fabrication of agar-conjugated Fe3O4 magnetic nanoparticles, 445601 (2010). https://doi.org/10.1088/0957-4484/21/44/445601

  63. Jordan, A.: Hyperthermia classic commentary: Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia ’ by Andreas Jordan et al. Int J 25, 512–516 (2009). https://doi.org/10.3109/02656730903183445

    Article  Google Scholar 

  64. Lauterbir, P.C.: © 1973 Nature Publishing Group Nature 242, 190 (1973)

    Google Scholar 

  65. Hanns-Joachim Weinmann, R.C.B., Press, W.R., Wesbey, G.E.: Characteristics of complex. Ame. J. Roentgenol. 142, 619 (1984). doi:https://doi.org/10.2214/ajr.142.3.619

  66. Hirano, S., Suzuki, K.T.: Exposure metabolism, and toxicity of rare earths and related compounds Environ. Health Perspect. 104, 85–95 1996

    Google Scholar 

  67. Santiago Sánchez-Cabezas, R.M.-M., Roberto, M.-R., Juan, G, Félix, S, Dalton.: Trans. R. Soc. Chem. 48, 3883–3892 (2019). doi:https://doi.org/10.1039/C8DT04685A

  68. Cardoso, V.F., Francesko, A., Ribeiro, C., Bañobre-lópez, M., Martins, P., Lanceros-mendez, S.: Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 1700845, 1–35 (2017). https://doi.org/10.1002/adhm.201700845

    Article  CAS  Google Scholar 

  69. Lee, N., Hyeon, T.: Nanomedicine Themed Issue 41 2575–2589 (2012). 10.1039/c1cs15248c

    Google Scholar 

  70. Jones, C.F., Grainger, D.W.: In vitro assessments of nanomaterial toxicity ☆. Adv. Drug Deliv. Rev. 61, 438–456 (2009). https://doi.org/10.1016/j.addr.2009.03.005

    Article  CAS  Google Scholar 

  71. Liu, X.F.E.I., Guan, Y.U.N.L.I.N., Yang, D.Z.H.I, Li, Z.H.I., K.D.E. Yao, Antibacterial Action of Chitosan and Carboxymethylated, 1324–1335 (2000)

    Google Scholar 

  72. Kettering, M., Winter, J., Zeisberger, M., Bremer-Streck, S., Oehring, H., Bergemann, C., Alexiou, C., Hergt, R., Halbhuber, K.J., Kaiser, W.A., Hilger, I.: Magnetic nanoparticles as bimodal tools in magnetically induced labelling and magnetic heating of tumour cells: an in vitro study. Nanotechnology 18, 9 (2007). 10.1088/0957-4484/18/17/175101

    Google Scholar 

  73. Goodwin, S., Peterson, C., Hoh, C., Bittner, C.: Targeting and retention of magnetic targeted carriers (MTCs ) enhancing intra-arterial chemotherapy, 194, 132–139 (1999)

    Google Scholar 

  74. Neuberger, T., Scho, B., Hofmann, M., Von Rechenberg, B.: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system . J. Magn. 293, 483–496 (2005). https://doi.org/10.1016/j.jmmm.2005.01.064

    Article  CAS  Google Scholar 

  75. Price, P.M., Mahmoud, W.E., Al-ghamdi, A.A., Bronstein, L.M.: Magnetic drug delivery: where the field is going. Front. Chem. 6, 1–7 (2018). https://doi.org/10.3389/fchem.2018.00619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Borah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seal, P., Saikia, D., Borah, J.P. (2021). Magnetic Nanomaterials and Their Biomedical Applications. In: Swain, B.P. (eds) Nanostructured Materials and their Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-8307-0_4

Download citation

Publish with us

Policies and ethics