Skip to main content

COVID-19 Analysis by Using Machine and Deep Learning

  • Chapter
  • First Online:
Internet of Medical Things for Smart Healthcare

Part of the book series: Studies in Big Data ((SBD,volume 80))

Abstract

Coronavirus is the pandemic in the whole world due to infection spread with community transfer. World Health Organization renames coronavirus to COVID-19, and the full name of coronavirus is severe acute respiratory syndrome coronavirus (SARS-CoV). COVID-19 belongs to the Betacoronavirus family and affects the respiratory system of humans. Machine learning is the part of artificial intelligence which used existing machine learning algorithms and dataset pattern to find an adequate solution for the problem. This chapter used machine learning algorithms supervised and unsupervised to analyze the spreading pattern such as confirmed case, recovered case, and death case of coronavirus worldwide. Analysis of the infection rate and mortality rate of coronavirus in the top 10 countries of the world. Analysis the effect of coronavirus in Asia and Europe visualized the result on the map. Choropleth is a thematic map which divides the world geographical area into different colors on the base of the data variable. This chapter used machine learning algorithms such as support vector machine, navies Bayes theorem, linear regression, decision tree repressors, random forest, and prophet algorithm for future prediction and to test the accuracy of prediction. The analysis of confirmed, recovered, and death cases is visualized by using Matplotlib in Python. Time series analysis of recovered, confirmed, and death cases of coronavirus predicted the future infection of the virus on the world. Analysis of the effect of Coronavirus, Country-wise, and State wise on top infected countries. Deep learning algorithm, long short-term memory (LSTM), is a recurrent neural network-type algorithm used to predict the future infection rate of coronavirus in the world. In this study, different machine learning algorithms were implemented and find the algorithm which gives the highest accuracy. Bar graph and pie are used to visualize the result of the experiment by using Python which helps to better understand the result. Analysis of the effect of coronavirus on Russia, Italy, the USA, the UK, Iran, Turkey, Germany, France, and Brazil finds the infection rate, mortality rate, and recovery rate of these countries. Analyze the precision, recall, and f1-score of these algorithms, and plot the graph. Find the recovered and death rates per one thousand patients of confirmed cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C., Zhou, J. et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology. 24(6), pp. 490–502 (2016). https://doi.org/10.1016/j.tim.2016.03.003

    Google Scholar 

  2. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J. et al.: A novel coronavirus from patients with pneumonia in China, 2019. New England J. Med. 382(8), pp. 727–733 (2020). https://doi.org/10.1056/nejmoa2001017

  3. Estola, T.: Coronaviruses, a new group of animal RNA viruses. Avian Dis. 14(2), pp. 330–336 (1970). https://doi.org/10.2307/1588476

  4. Fabricant, J.: The early history of infectious bronchitis. Avian Dis. 42(4), pp. 648–650 (1998). https://doi.org/10.2307/1592697

  5. McIntosh, K.,: Coronaviruses: a comparative review, current topics in microbiology and immunology. Ergebnisse der Mikrobiologie und Immunitätsforschung, p. 87. Berlin, Heidelberg, Springer, 1974. https://doi.org/10.1007/978-3-642-65775-7_3

  6. Kahn, J.S., McIntosh, K.: History and recent advances in coronavirus discovery. Pediatric Infect. Dis. J. 24(11), S223–S227 (2005). https://doi.org/10.1097/01.inf.0000188166.17324.60

    Article  Google Scholar 

  7. Mahase, E.: The BMJ in 1965, BMJ. 369, pp. 547 (2020). https://doi.org/10.1136/bmj.m1547

  8. Tyrrell, D.A., Bynoe, M.L.: Cultivation of viruses from a high proportion of patients with colds. Lancet 1, 76–77 (1966)

    Article  Google Scholar 

  9. Hamre, D., Procknow, J.J.: A new virus isolated from the human respiratory tract. Proc. SocExpBiol. Med. 121, 190–193 (1966)

    Article  Google Scholar 

  10. McIntosh, K., Dees, J.H., Becker, W.B., Kapikian, A.Z., Chanock, R.M.: Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. U.S.A. 57, 933–940 (1967)

    Article  Google Scholar 

  11. Tyrrell, D.A., Almeida, J.D., Cunningham, C.H. et al.: Coronaviridae, Intervirology, 5, 76–82 (1975)

    Google Scholar 

  12. Drosten, C., Gunther, S., Preiser, W. et al.: Identification of a novel coronavirus in patients with severe acute respiratory syndrome see comment. N. Engl. J. Med. 348, 1967–1976 (2003)

    Google Scholar 

  13. Ksiazek, T.G., Erdman, D., Goldsmith, C.S., et al.: A novel coronavirus associated with severe acute respiratory syndrome see comment. N. Engl. J. Med. 348, 1953–1966 (2003)

    Article  Google Scholar 

  14. Peiris, J.S., Lai, St, Poon, L.L. et al.: Coronavirus as a possible cause of severe acute respiratory syndrome see comment, Lancet. 361, 1319–1325 (2003)

    Google Scholar 

  15. Centers for Disease Control and Prevention. http://www.cdc.gov/ncidod/sars/index.htm

  16. Van der Hoek, L., Pyrc, K., Jebbink, M.F., et al.: Identification of a new human coronavirus. Nat. Med. 10, 368–373 (2004)

    Article  Google Scholar 

  17. Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., et al.: A previously undescribed coronavirus associated with respiratory disease in humans. Proc. Natl. Acad. Sci. U.S.A. 101, 6212–6216 (2004)

    Article  Google Scholar 

  18. Disease Outbreak News (2014). www.who.int. 8 October 2014

  19. Middle East respiratory syndrome coronavirus (MERS-CoV)—Republic of Korea, (2015). www.who.int. 24 May 2015

  20. COVID-19: WHO names disease caused by new coronavirus, https://www.aljazeera.com, 11, Feb 2020

  21. Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y.: Coronavirus genomics and bioinformatics analysis. Viruses 2, 1804–1820 (2010)

    Article  Google Scholar 

  22. Dhama, K., Khan, S., Tiwari, R. et al.: Coronavirus disease 2019–COVID-19, Preprints (2020). https://doi.org/10.20944/preprints202003.0001.v1

  23. Geller, C., Varbanov, M., Raphael, E.: Duval human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses 4, 3044–3068 (2012). https://doi.org/10.3390/v4113044

    Article  Google Scholar 

  24. WHO: Novel Coronavirus—Thailand, (2020a). https://www.who.int/csr/don/14-January-2020-novel-coronavirus-thailand-ex-china/en/

  25. International Committee on Taxonomy of Viruses (ICTV). October 2018. Archived from the original on 2019–05-14

    Google Scholar 

  26. ICTV Taxonomy history: Orthocoronavirinae. International Committee on Taxonomy of Viruses (ICTV) (2020)

    Google Scholar 

  27. Fan, Y., Zhao, K., Shi, Z.L., Zhou, P.: Bat coronaviruses in China. Viruses. 11(3), 210 (2019). https://doi.org/10.3390/v11030210

  28. Wertheim, J.O., Chu, D.K., Peiris, J.S., Kosakovsky Pond, S.L., Poon, L.L.: A case for the ancient origin of coronaviruses. J. Virol. 87(12), 7039–45 (2013). https://doi.org/10.1128/jvi.03273-12

  29. Nextstrain, phylogenetic tree of Beta-CoV

    Google Scholar 

  30. Liu, P., Shi, L., Zhang, W., He, J., Liu, C., Zhao, C. et al.: Prevalence and genetic diversity analysis of human coronaviruses among cross-border children. Virol. J. 14(1), 230 (2017). https://doi.org/10.1186/s12985-017-0896-0

  31. Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., et al.: Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270 (2003)

    Article  Google Scholar 

  32. Zaki, A.M., Boheemen, S.V., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A.: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012)

    Article  Google Scholar 

  33. Yadav, D.; Maheshwari, H.; Chandra, U.: Outbreak prediction of covid-19 in most susceptible countries. Global J. Environ. Sci. Manage. 6(4), (2020). https://www.gjesm.net/article_39228.html

  34. PIB, (2020). https://pib.gov.in/pressreleaseiframepage.aspx?prid=1601095

  35. WHO (2020b) World Health Organization website https://www.who.int/health-topics/coronavirus

  36. Covid-19.in, (2020). https://www.mygov.in/covid-19/?cbps=1

  37. Abdi, M.: Coronavirus disease 2019 (COVID-19) outbreak in Iran; actions and problems. Infect. Control Hosp. Epidemiol. pp. 1–5 (2020)

    Google Scholar 

  38. ECDC: European Centre for Disease Prevention and Control (2020). https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

  39. Chintalapudi, N., Battineni, G., Amenta, F.: COVID-19 disease outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: a data driven model approach. J. Microbiol. Immunol. Infect. (2020). https://doi.org/10.1016/j.jmii.2020.04.004

  40. Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J.M., Yan, P., Chowell, G.: Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infect. Dis. Model. 5, 256–263 (2020)

    Google Scholar 

  41. Gao, Y., Zhang, Z., Yao, W., Ying, Q., Long, C., Fu, X.: Forecasting the cumulative number of COVID-19 deaths in China: a Boltzmann function-based modeling study. Infect. Control Hosp. Epidemiol. pp. 1–3 (2020)

    Google Scholar 

  42. Box, G.E.P., Jenkins, G.M.: Time series analysis: forecasting and control. Revised edition, Holden Day, San Francisco, 1976. https://www.abebooks.com/first-edition/Time-Series-Analysis-Forecasting-Control-Holden-Day/3057095791/bd

  43. Gorse, G.J., O’Connor, T.Z., Hall, S.L., Vitale, J.N., Nichol, K.L.: Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease. J. Infect. Dis. 199, 847–857 (2009)

    Article  Google Scholar 

  44. Ranjan, R.: Predictions for covid-19 outbreak in India using epidemiological models (2020), medRxiv preprint doi:https://doi.org/10.1101/2020.04.02.20051466

  45. Tomar, A., Gupta, N.: Prediction for the spread of COVID-19 in India and effectiveness of preventive measures. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.138762

    Article  Google Scholar 

  46. Pene, F., Merlat, A., Vabret, A., Rozenberg, F., Buzyn, A., Dreyfus, F., Cariou, A., Freymuth, F., Lebon, P.: Coronavirus 229E-related pneumonia in immunocompromised patients. Clin. Infect. Dis. 37, 929–932 (2003). https://doi.org/10.1086/377612

    Article  Google Scholar 

  47. Vijgen, L., Keyaerts, E., Moës, E., Maes, P., Duson, G., van Ranst, M.: Development of one-step, real-time, quantitative reverse transcriptase pcr assays for absolute quantitation of human coronaviruses OC43 and 229E. J. Clin. Microbiol. 43, 5452–5456 (2005)https://doi.org/10.1128/jcm.43.11.5452-5456.2005

  48. Van der Hoek, L.: Human coronaviruses: what do they cause? Antivir. Ther. 12, 651–658 (2007)

    Google Scholar 

  49. Walsh 2007, E.E., Shin, J.H., Falsey, A.R.: Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations. J. Infect. Dis. 208, 1634–1642 (2013). https://doi.org/10.1093/infdis/jit393

  50. The Korean Society of Infectious Diseases: Korean society for healthcare-associated infection control and prevention. an unexpected outbreak of middle east respiratory syndrome coronavirus infection in the Republic of Korea. Infect. Chemother. 47, 120–122 (2015)

    Article  Google Scholar 

  51. McBride, R., Fielding, B.C.: The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses 4, 2902–2923 (2012)

    Article  Google Scholar 

  52. Jones, B.A., Grace, D., Kock, R., Alonso, S., Rushton, J., et al.: Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA. 21, 8399–8340 (2013)

    Google Scholar 

  53. Esper, F., Martinello, R.A., Boucher, P. et al.: Evidence of a novel human coronavirus that is associated with respiratory tract disease in infants and young children. J. Infect. Dis. 191, 492–498 (2005)

    Google Scholar 

  54. Arbour, N., Day, R., Newcombe, J., Talbot, P.J.: Neuroinvasion by Human Respiratory Coronaviruses. J. Virol. 74, 8913–892 (2000)

    Article  Google Scholar 

  55. Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., et al.: Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86(7), 3995–4008 (2012)

    Article  Google Scholar 

  56. Doucleef, M.: Scientists go deep on genes of SARS-like virus, Associated Press (2012)

    Google Scholar 

  57. Decaro, N.: Alphacoronavirus. The Springer Index of Viruses, pp. 371–383. (Springer, 2011). https://doi.org/10.1007/978-0-387-95919-1_56

  58. Decaro, N.: Betacoronavirus. The Springer Index of Viruses, pp. 385–401. Springer, 2011. https://doi.org/10.1007/978-0-387-95919-1_57

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharminder Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, D., Maheshwari, H., Chandra, U., Sharma, A. (2020). COVID-19 Analysis by Using Machine and Deep Learning. In: Chakraborty, C., Banerjee, A., Garg, L., Rodrigues, J.J.P.C. (eds) Internet of Medical Things for Smart Healthcare. Studies in Big Data, vol 80. Springer, Singapore. https://doi.org/10.1007/978-981-15-8097-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8097-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8096-3

  • Online ISBN: 978-981-15-8097-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics