Skip to main content

A Robust Framework for High-Quality Voice Conversion with Conditional Generative Adversarial Network

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1252))

Included in the following conference series:

  • 1608 Accesses

Abstract

The deep neural network (DNNs) has been applied in voice conversion (VC) system successfully. DNN shows its effectiveness especially with a large scale of training speech data, but on a small dataset, DNN suffers from the overfitting problem, resulting in performance degradation. Recently, many generative adversarial network (GAN) based VC methods have been developed, which prove to be a promising approach. However, the quality and similarity of generated speech are not entirely satisfactory. The converted speech usually consists of vague contents with buzzy noise and sounds robotic. In this paper, we study and make modification to the basic conditional generative network (cGAN). Focusing on establishing a robust framework for high-quality VC, the proposed method uses a cGAN with a L1 loss and a less explicit constraint, an identity loss. These constraints cooperate to generate speech of higher quality and similarity. We test our method on non-parallel datasets. An objective evaluation demonstrates that this approach achieves better performance and robustness than other GAN-based methods on the intra-gender task. A subjective evaluation shows that the naturalness and similarity are improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jia, Y., Zhang, Y., Weiss, R., et al.: Transfer learning from speaker verification to multispeaker text-to-speech synthesis. In: Advances in Neural Information Processing Systems, pp. 4480–4490 (2018)

    Google Scholar 

  2. Jia, Y., Weiss, R.J., Biadsy, F., et al.: Direct speech-to-speech translation with a sequence-to-sequence model (2019). arXiv preprint arXiv:1904.06037

  3. Zhao, Y., Yue, J., Song, W., et al.: Tibetan multi-dialect speech and dialect identity recognition. Comput. Mater. Continua 60(3), 1223–1235 (2019)

    Article  Google Scholar 

  4. Kersta, L.G.: Voiceprint identification. J. Acoust. Soc. Am. 34(5), 725–725 (1962)

    Article  Google Scholar 

  5. Abe, M., Nakamura, S., Shikano, K., et al.: Voice conversion through vector quantization. J. Acoust. Soc. Jpn (E) 11(2), 71–76 (1990)

    Article  Google Scholar 

  6. Stylianou, Y., Cappé, O., Moulines, E.: Continuous probabilistic transform for voice conversion. IEEE Trans. Speech Audio Process. 6(2), 131–142 (1998)

    Article  Google Scholar 

  7. Chen, Y., Chu, M., Chang, E., et al.: Voice conversion with smoothed GMM and MAP adaptation. In: Eighth European Conference on Speech Communication and Technology (2003)

    Google Scholar 

  8. Desai, S., Black, A.W., Yegnanarayana, B., et al.: Spectral mapping using artificial neural networks for voice conversion. IEEE Trans. Audio Speech Lang. Process. 18(5), 954–964 (2010)

    Article  Google Scholar 

  9. Mohammadi, S.H., Kain, A.: Voice conversion using deep neural networks with speaker-independent pre-training. In: IEEE Spoken Language Technology Workshop (SLT), pp. 19–23 (2019)

    Google Scholar 

  10. Kaneko, T., Kameoka, H., Hiramatsu, K., et al.: Sequence-to-sequence voice conversion with similarity metric learned using generative adversarial networks. In: INTERSPEECH, pp. 1283–1287 (2017)

    Google Scholar 

  11. Tobing, P.L., Wu, Y.C., Hayashi, T., et al.: Voice conversion with cyclic recurrent neural network and fine-tuned Wavenet vocoder. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6815–6819. IEEE (2019)

    Google Scholar 

  12. Sun, L., Kang, S., Li, K., et al.: Voice conversion using deep bidirectional long short-term memory based recurrent neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4869–4873. IEEE (2015)

    Google Scholar 

  13. Sun, L., Li, K., Wang, H., et al.: Phonetic posteriorgrams for many-to-one voice conversion without parallel data training. In: 2016 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2016)

    Google Scholar 

  14. Hsu, C.C., Hwang, H.T., Wu, Y.C., et al.: Voice conversion from unaligned corpora using variational autoencoding wasserstein generative adversarial networks (2017). arXiv preprint arXiv:1704.00849

  15. Fang, F., Yamagishi, J., Echizen, I., et al.: High-quality nonparallel voice conversion based on cycle-consistent adversarial network. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5279–5283. IEEE (2018)

    Google Scholar 

  16. Kaneko, T., Kameoka, H., Tanaka, K., et al.: CycleGAN-VC2: improved CycleGAN-based non-parallel voice conversion. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6820–6824. IEEE (2019)

    Google Scholar 

  17. Silén, H., Helander, E., Nurminen, J., et al.: Ways to implement global variance in statistical speech synthesis. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  18. Takamichi, S., Toda, T., Black, A.W., et al.: Postfilters to modify the modulation spectrum for statistical parametric speech synthesis. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 24(4), 755–767 (2016)

    Article  Google Scholar 

  19. Creswell, A., White, T., Dumoulin, V., et al.: Generative adversarial networks: an overview. IEEE Sig. Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  20. Li, C., Jiang, Y., Cheslyar, M.: Embedding image through generated intermediate medium using deep convolutional generative adversarial network. Comput. Mater. Continua 56(2), 313–324 (2018)

    Google Scholar 

  21. Tu, Y., Lin, Y., Wang, J., Kim, J.-U.: Semi-supervised learning with generative adversarial networks on digital signal modulation classification. Comput. Mater. Continua 55(2), 243–254 (2018)

    Google Scholar 

  22. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  23. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  24. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). arXiv preprint arXiv:1411.1784

  25. Isola, P., Zhu, J.Y., Zhou, T., et al.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  26. Pathak, D., Krahenbuhl, P., Donahue, J., et al.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  27. Mao, X., Li, Q., Xie, H., et al.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  28. Muda, L., Begam, M., Elamvazuthi, I.: Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques (2010). arXiv preprint arXiv:1003.4083

  29. Liu, K., Zhang, J., Yan, Y.: High quality voice conversion through phoneme-based linear mapping functions with STRAIGHT for mandarin. In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), vol. 4, pp. 410–414. IEEE (2007)

    Google Scholar 

  30. Ohtani, Y., Toda, T., Saruwatari, H., et al.: Maximum likelihood voice conversion based on GMM with STRAIGHT mixed excitation (2006)

    Google Scholar 

  31. Morise, M., Yokomori, F., Ozawa, K.: WORLD: a vocoder-based high-quality speech synthesis system for real-time applications. IEICE Trans. Inf. Syst. 99(7), 1877–1884 (2016)

    Article  Google Scholar 

  32. Zhao, Y., Li, G., Xie, W., et al.: GUN: gradual upsampling network for single image super-resolution. IEEE Access 6, 39363–39374 (2018)

    Article  Google Scholar 

  33. Lorenzo-Trueba, J., Yamagishi, J., Toda, T., et al.: The voice conversion challenge 2018: Promoting development of parallel and nonparallel methods (2018). arXiv preprint arXiv:1804.04262

Download references

Acknowledgements

This research is supported in part by the National Science and Technology Major Project for IND (investigational new drug) (Project No. 2018ZX09201-014), National Key Research and Development Project (Grant No. 2017YFC0820504), and the CETC Joint Advanced Research Foundation (Grant No. 6141B08080101, 6141B08010102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxue Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Wang, Y., Liu, Y., Xiao, W., Xie, H. (2020). A Robust Framework for High-Quality Voice Conversion with Conditional Generative Adversarial Network. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Communications in Computer and Information Science, vol 1252. Springer, Singapore. https://doi.org/10.1007/978-981-15-8083-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8083-3_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8082-6

  • Online ISBN: 978-981-15-8083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics