Skip to main content

Simulative Study on Effects of Numerical Solution and Contact Parameters of Direct Time Integration Methods Toward Stick-Slip-Related Disk Brake Vibrations

  • Conference paper
  • First Online:
Proceedings of the 14th International Conference on Vibration Problems (ICOVP 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Vibrations excited by stick-slip transitions exist in numerous applications. A vehicle’s disk brake system, based on the principle of frictional dissipation, is one of them: During low speeds, so-called creep groan vibrations can occur. With increasing numbers of electrified drive trains and automated driving functions, vehicles become more and more prone for this issue of comfort and quality. Currently, no industrially applicable simulation tools are existent for the prediction of this phenomenon. Direct time integration could be one option for the future, however, its setup of numerical solution and contact parameters was so far not treated. This work intends to answer open questions on explicit and implicit time integration of such severe discontinuity problems.

ftg.tugraz.at

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friction–vibration interactions. In: Chen G (ed) Handbook of friction-vibration interactions. Woodhead Publishing, pp 153–305 (2014). https://doi.org/10.1533/9780857094599.153

  2. Abdelhamid MK (1995) Creep groan of disc brakes. SAE Technical Papers. https://doi.org/10.4271/951282

  3. Bettella M, Harrison MF, Sharp RS (2002) Investigation of automotive creep groan noise with a distributed-source excitation technique. J Sound Vib 255(3):531–547. https://doi.org/10.1006/jsvi.2001.4178

    Article  Google Scholar 

  4. Brecht J, Hoffrichter W, Dohle A (1997) Mechanisms of brake creep groan. SAE Technical Papers. https://doi.org/10.4271/973026

  5. Breuer B, Bill KH (eds.) (2017) Bremsenhandbuch: Grundlagen, Komponenten, Systeme, Fahrdynamik, 5th edn. ATZ/MTZ-Fachbuch. Springer Fachmedien, Wiesbaden. https://doi.org/10.1007/978-3-8348-2225-3

  6. Dassault Systèmes (2016) SIMULIA User Assistance 2017

    Google Scholar 

  7. Donley M, Riesland D (2003) Brake groan simulation for a McPherson strut type suspension. SAE Technical Papers. https://doi.org/10.4271/2003-01-1627

  8. Gräbner N (2016) Analysis and improvement of the simulation method of brake squeal. Dissertation. TU Berlin, Berlin

    Google Scholar 

  9. Hetzler H (2008) Zur Stabilität von Systemen bewegter Kontinua mit Reibkontakten am Beispiel des Bremsenquietschens: Dissertation, Universität Karlsruhe, Schriftenreihe des Instituts für Technische Mechanik, vol 8. Univ.-Verl. Karlsruhe, Karlsruhe

    Google Scholar 

  10. Hilber HM, Hughes TJR (1977) Collocation, dissipation and “overshoot” for time integration schemes in structural dynamics. Earthq Eng Struct Dyn 6(1):99–117. https://doi.org/10.1002/eqe.4290060111

    Article  Google Scholar 

  11. Hilber HM, Hughes TJR, Taylor RL (1976) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283–292. https://doi.org/10.1002/eqe.4290050306

    Article  Google Scholar 

  12. Huemer-Kals S, Pürscher M, Fischer P (2017) Application limits of the complex eigenvalue analysis for low-frequency vibrations of disk brake systems. SAE Technical Papers. https://doi.org/10.4271/2017-01-2494

  13. Hulbert GM, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng 137(2):175–188. https://doi.org/10.1016/S0045-7825(96)01036-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Nunes R, Shivaswamy A, Könning M (2016) A time domain approach towards analysing creep groan noise in automobile brakes. In: EuroBrake 2016. FISITA

    Google Scholar 

  15. Ostermeyer GP (2001) Friction and wear of brake systems. Forschung im Ingenieurwesen 66(6):0267–0272. https://doi.org/10.1007/s100100100063

    Article  Google Scholar 

  16. Pürscher M, Fischer P (2017) Systematic experimental creep groan characterization using a suspension and brake test rig. SAE Technical Papers. https://doi.org/10.4271/2017-01-2488

  17. Pürscher M, Fischer P (2019) ODS of fixed calliper brake and double wishbone axle during creep groan at corner test rig. In: EuroBrake 2019, vol EB2019-FBR-021. FISITA

    Google Scholar 

  18. Pürscher M, Huemer-Kals S, Fischer P (2018) Experimental and simulative study of creep groan in terms of MacPherson axle bushing elasticities. In: EuroBrake 2018, vol EB2018-SVM-011. FISITA

    Google Scholar 

  19. Pürscher M, Huemer-Kals S, Fischer P (2018) Experimental investigation of low-frequency vibration patterns in automotive disk brake systems: utilization study for modal simulation methods. SAE Technical Papers. https://doi.org/10.4271/2018-01-1513

  20. Pürscher M, Huemer-Kals S, Fischer P (2019) Investigations on creep groan concerning static and dynamic axle bushing properties. In: EuroBrake 2019, vol EB2019-SVM-001. FISITA

    Google Scholar 

  21. Stump O, Nunes R, Häsler K, Seemann W (2018) Linear and non-linear stability analysis of a fixed caliper brake during forward and backward driving. J Vib Acoust. https://doi.org/10.1115/1.4042393

  22. Uchiyama K, Shishido Y (2014) Study of creep groan simulation by implicit dynamic analysis method of FEA (Part2). SAE Technical Papers. https://doi.org/10.4271/2014-01-2516

  23. Uchiyama K, Shishido Y (2015) Study of creep groan simulation by implicit dynamic analysis method of FEA (Part 3). SAE Technical Papers. https://doi.org/10.4271/2015-01-2689

  24. Wagner M (2017) Lineare und nichtlineare FEM: Eine Einführung mit Anwendungen in der Umformsimulation mit LS-DYNA. Springer Vieweg, Wiesbaden

    Google Scholar 

  25. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  26. Zachbauer L (2019) Numerical strategies for the transient simulation of brake creep groan. Master thesis, Graz University of Technology

    Google Scholar 

  27. Zhao X (2018) Theoretical and experimental investigations of creep groan in automotive disk brakes. Dissertation, TU Berlin, Berlin

    Google Scholar 

  28. Zhao X, Gräbner N, von Wagner U (2018) Theoretical and experimental investigations of the bifurcation behavior of creep groan of automotive disk brakes. J Theor Appl Mech (Poland) 56(2):351–364. https://doi.org/10.15632/jtam-pl.56.2.351

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severin Huemer-Kals .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huemer-Kals, S., Zachbauer, L., Pürscher, M., Fischer, P. (2021). Simulative Study on Effects of Numerical Solution and Contact Parameters of Direct Time Integration Methods Toward Stick-Slip-Related Disk Brake Vibrations. In: Sapountzakis, E.J., Banerjee, M., Biswas, P., Inan, E. (eds) Proceedings of the 14th International Conference on Vibration Problems. ICOVP 2019. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-8049-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8049-9_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8048-2

  • Online ISBN: 978-981-15-8049-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics