Skip to main content

Investigation on ZMP Variation of 12-DoF Biped Robot in Screw Theory Framework

  • Conference paper
  • First Online:
Advances in Systems Engineering

Abstract

Biped robots are the robots that reproduce human locomotion. Biped robots perform significantly in difficult terrains compared to wheeled robots because of their discrete surface contacts. These robots find wide variety of applications in fields such as medical rehabilitation, industries, disaster management, and defense. The two-legged walking is a highly nonlinear phenomenon and hence achieving stable locomotion is a major challenge in biped robot development. In this work, a 12-DoF biped robot is developed and dynamic stability of the robot for different foot trajectories is investigated using zero-moment point (ZMP) criterion. The kinematic modelling of biped robot is carried out using screw theory and the dynamic equations of motion are framed using recursive Newton–Euler (N–E) method. The stability of the biped robot while executing foot trajectories such as cycloid and Bezier curve is analyzed for single support phase (SSP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarkar A, Dutta A (2015) 8-DoF biped robot with compliant-links. Robotics and Autonomous Systems 63(1):57–67. https://doi.org/10.1016/j.robot.2014.09.014

    Article  Google Scholar 

  2. Shih CL, Zhu Y, Gruver (1991) Optimization of the biped robot trajectory. In: Conference proceedings 1991 IEEE international conference on systems, man, and cybernetics. IEEE, VA, USA pp 899–903. https://doi.org/10.1109/icsmc.1991.169801

  3. Luxman R, Zielinska T (2017) Robot motion synthesis using ground reaction forces pattern: analysis of walking posture. Int J Adv Rob Sys 14(4). https://doi.org/10.1177/1729881417720873

  4. Arbulu M, Balaguer C (2007) Real-time gait planning for Rh-1 humanoid robot, using local axis gait algorithm. In: 7th IEEE-RAS international conference on humanoid robots. IEEE, Pittsburgh, pp 563–568. https://doi.org/10.1109/ichr.2007.4813927

  5. Toscano GS, Simas H, Castelan EB (2014) Screw-based modeling of a humanoid biped robot. In: Anais do XX congresso brasileiro de automática, Belo Horizonte, pp 944–951

    Google Scholar 

  6. Tlalolini D, Chevallereau C, Aoustin Y (2009) Comparison of different gaits with rotation of the feet for a planar biped. Robot Auton Syst 57(4):371–383. https://doi.org/10.1016/j.robot.2008.09.008

    Article  Google Scholar 

  7. Sadedel M, Yousefi-Koma A, Khadiv M, Iranmanesh F (2018) Heel-strike and toe-off motions optimization for humanoid robots equipped with active toe joints. Robotica 36(6):925–944. https://doi.org/10.1017/S0263574718000140

    Article  Google Scholar 

  8. Al-Shuka HFN, Corves B, Zhu WH (2014) Dynamic modeling of biped robot using Lagrangian and recursive Newton-Euler formulations. Int J Comput Appl 101(3):1–8. https://doi.org/10.5120/17664-8485

    Article  Google Scholar 

  9. Goswami A (1999) Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int J Rob Res 18(6):523–533. https://doi.org/10.1177/02783649922066376

    Article  Google Scholar 

  10. Vukobratovic M, Borovac B (2004) Zero-moment point—thirty five years of its life. Int J Huma Rob 1(1):157–173. https://doi.org/10.1142/s0219843604000083

  11. Sudheer AP, Vijayakumar R, Mohandas KP (2012) Stable gait synthesis and analysis of a 12-degree of freedom biped robot in sagittal and frontal planes. J Auto Mob Rob Intel Sys 6(4):36–44

    Google Scholar 

  12. Sugihara T, Nakamura Y, Inoue H (2002) Realtime humanoid motion generation through ZMP manipulation based on inverted pendulum control. In: Proceedings of the 2002 IEEE international conference on robotics and automation. IEEE, Washington, DC, USA, pp 1404–1409. https://doi.org/10.1109/robot.2002.1014740

  13. Mousavi PN, Bagheri A (2007) Mathematical simulation of a seven link biped robot on various surfaces and ZMP considerations. Appl Math Mod 31(1):18–37. https://doi.org/10.1016/j.apm.2006.06.018

    Article  MATH  Google Scholar 

  14. Vundavilli PR, Sahu SK, Pratihar DK (2007) Dynamically balanced ascending and descending gaits of a two-legged robot. Int J Huma Rob 4(4):717–751. https://doi.org/10.1142/S0219843607001266

    Article  Google Scholar 

  15. Vundavilli PR, Pratihar DK (2009) Soft computing-based gait planners for a dynamically balanced biped robot negotiating sloping surfaces. Appl Soft Comput 9(1):191–208. https://doi.org/10.1016/j.asoc.2008.04.004

    Article  Google Scholar 

  16. Vundavilli PR, Pratihar DK (2010) Dynamically balanced optimal gaits of a ditch-crossing biped robot. Robot Auton Syst 58(4):349–361. https://doi.org/10.1016/j.robot.2009.10.004

    Article  Google Scholar 

  17. Mandava RK, Vundavilli PR (2017) Study on influence of hip trajectory on the balance of a biped robot. In: Attele KR, Kumar A, Sankar V, Rao N, Sarma T (eds) Emerging trends in electrical, communications and information technologies, LNEE, vol 394. Springer, Singapore, pp 265–272. https://doi.org/10.1007/978-981-10-1540-3_28

  18. Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H (2003) Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the 2003 IEEE international conference on robotics and automation, vol 3, pp. 14-19. IEEE, Taipei, Taiwan. https://doi.org/10.1109/robot.2003.1241826

  19. Cho B, Kim J (2018) Dynamic posture stabilization of a biped robot SUBO-1 on slope-changing grounds. Int J Prec Eng Man 19(7):1003–1009. https://doi.org/10.1007/s12541-018-0118-8

    Article  Google Scholar 

  20. Erbatur K, Okazaki A, Obiya K, Takahashi T, Kawamura A (2002) A study on the zero moment point measurement for biped walking robots. In: Proceedings of 7th international workshop on advanced motion control. IEEE, Maribor, Slovenia, pp 431–436. https://doi.org/10.1109/amc.2002.1026959

  21. Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, USA

    Book  Google Scholar 

  22. Lynch KM, Frank CP (2017) Modern robotics mechanics, planning, and control, 1st edn. Cambridge University Press, USA

    Google Scholar 

  23. Huang Q, Yokoi K, Kajita S, Kaneko K, Arai H, Koyachi N, Tanie K (2001) Planning walking patterns for a biped robot. IEEE Trans Rob Auto 17(3):280–289. https://doi.org/10.1109/70.938385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navaneeth Varma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varma, N., Sudheer, A.P., Joy, M.L. (2021). Investigation on ZMP Variation of 12-DoF Biped Robot in Screw Theory Framework. In: Saran, V.H., Misra, R.K. (eds) Advances in Systems Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-8025-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8025-3_56

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8024-6

  • Online ISBN: 978-981-15-8025-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics