Skip to main content

Color Image Segmentation Using Superpixel-Based Fast FCM

  • Conference paper
  • First Online:
ICCCE 2020

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 698))

Abstract

A large number of improved variants of the Fuzzy c-means were used to segment the gray scale and color image. Nevertheless, some of them take time to yield the best and optimal results and for two reasons cannot produce adequate segmentation results for color images. This work proposes a simple FCM clustering algorithm based on the Super pixel Algorithm (SFFCM), which is considerably faster and more robust for image segmentation applications which are based purely on the color parameter. In this research work, to attain an accurate contour super pixel image for improved local spatial neighborhoods, an efficient algorithm referred as multi-scale morphological gradient reconstruction (MMGR) operation is originally described. The significance of the proposed method lies in the relationships between the pixels and how they are utilized in the flow of the application. Compared to the conventional adjacent fixed-size and shape frame, the super pixel image provides improved adaptive and exact amount of irregular local spatial communities which help to enhance color image segmentation. Coming to the next step, the original color image is essentially based on the obtained super pixel picture, and the number of pixels in each super pixel region easily decides its histogram. Ultimately, FCM is implemented to obtain final segmentation results that increase the histogram parameter on the super pixel picture. The performance of the proposed method is computed using Matlab computing language and also a statistical measure is carried out based on different parameters and their respective graphical representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lei T, Jia X, Zhang Y, Liu S, Meng H, Nandi AK (2019) Superpixel-based fast fuzzy C-Means clustering for color image segmentation. IEEE Trans Fuzzy Syst 27(9):1753–1766. https://doi.org/10.1109/TFUZZ.2018.2889018

    Article  Google Scholar 

  2. Zeng S, Wang X, Cui H, Zheng C, Feng D (2018) A unified collaborative multi-kernel fuzzy clustering for multiview data. IEEE Trans Fuzzy Syst 26(3):1671–1687

    Article  Google Scholar 

  3. Ma J, Li S, Qin H, Hao A (2017) Unsupervised multi-class cosegmentation via joint-cut over L1-manifold hyper-graph of discriminative image regions. IEEE Trans Image Process 26(3):1216–1230

    Article  MathSciNet  MATH  Google Scholar 

  4. Gong M et al (2016) Nonparametric statistical active contour based on inclusion degree of fuzzy sets. IEEE Trans Fuzzy Syst 24(5):1176–1192

    Article  Google Scholar 

  5. Kumar A, Shaik F (May 2015) Image processing in diabetic related causes. Springer-Verlag Singapur Publishers (Springer Briefs in Applied Sciences and Technology-Forensics and Medical Bio-informatics). (ISBN:978-981-287-623-2)

    Google Scholar 

  6. Bai M, Urtasun R (2017) Deep watershed transform for instance segmentation. In: Proceedings of IEEE conference computer vision pattern recognition. (CVPR), Honolulu, HI, pp 2858–2866

    Google Scholar 

  7. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  8. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2281

    Article  Google Scholar 

  9. Pham DL, Prince JL (1999) An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recogn Lett 20(1):57–68

    Article  MATH  Google Scholar 

  10. Cocosco CA, Kollokian V, Kwan RK-S, Evans AC (1997) BrainWeb: online interface to a 3D MRI simulated brain database. NeuroImage 5:S425

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jala Himabindhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Himabindhu, J., Anusha, V.S. (2021). Color Image Segmentation Using Superpixel-Based Fast FCM. In: Kumar, A., Mozar, S. (eds) ICCCE 2020. Lecture Notes in Electrical Engineering, vol 698. Springer, Singapore. https://doi.org/10.1007/978-981-15-7961-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7961-5_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7960-8

  • Online ISBN: 978-981-15-7961-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics