Skip to main content

Thermoelectric Properties of Cobalt Oxides and Other Doped Mott Insulators

  • Chapter
  • First Online:
Spin-Crossover Cobaltite

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 305))

  • 267 Accesses

Abstract

One of the most important topics of cobalt oxides is the large thermopower (absolute Seebeck coefficient), which has been attracted attention due to their potential application as thermoelectric conversion material. In this chapter, the basics of thermoelectrics and thermoelectric response in cobalt oxides and related transition metal oxides are introduced. Thermopower is corresponding to the carried entropy by the electric current. In the strongly correlated electron systems, the spin and orbital degrees of freedom contribute to the entropy flow. The role of spin and orbital degrees of freedom on the thermoelectric effect is theoretically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the non-interacting spinful electron system, the spin degeneracy is canceled out for the ratio between the numbers of the vacant and occupied states. Therefore, the role of spin degeneracy is often neglected in the semiconductor physics.

References

  1. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997)

    Article  ADS  Google Scholar 

  2. D.J. Singh, Phys. Rev. B 61, 13397 (2000)

    Article  ADS  Google Scholar 

  3. T. Itoh, I. Terasaki, Jpn. J. Appl. Phys. 39, 6658 (2000)

    Article  ADS  Google Scholar 

  4. A.C. Masset et al., Phys. Rev. B 62, 166 (2000)

    Article  ADS  Google Scholar 

  5. R. Funahashi et al., Jpn. J. Appl. Phys. 39, L1127 (2000)

    Google Scholar 

  6. W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 62, 6869 (2000)

    Article  ADS  Google Scholar 

  7. T. Motohashi et al., Appl. Phys. Lett. 79, 1480 (2001)

    Article  ADS  Google Scholar 

  8. K. Fujita, T. Mochida, K. Nakamura, Jpn. J. Appl. Phys. 40, 4644 (2001)

    Article  ADS  Google Scholar 

  9. S. HĂ©bert et al., Phys. Rev. B 64, 172101 (2001)

    Article  ADS  Google Scholar 

  10. Y. Miyazaki et al., J. Phys. Soc. Jpn. 71, 491 (2002)

    Article  ADS  Google Scholar 

  11. I. Terasaki, I. Tsukada, Y. Iguchi, Phys. Rev. B 65, 195106 (2002)

    Article  ADS  Google Scholar 

  12. T. Valla et al., Nature 417, 627 (2002)

    Article  ADS  Google Scholar 

  13. Y. Wang et al., Nature 423, 425 (2003)

    Article  ADS  Google Scholar 

  14. T. Takeuchi, Phys. Rev. B 69, 125410 (2004)

    Article  ADS  Google Scholar 

  15. M.L. Foo, Phys. Rev. Lett. 92, 247001 (2004)

    Article  ADS  Google Scholar 

  16. M.Z. Hasan, Phys. Rev. Lett. 92, 246402 (2004)

    Article  ADS  Google Scholar 

  17. S. Maekawa et al., Physics of Transition Metal Oxide, Springer Series in Solid-State Sciences, vol. 144 (Springer-Verlag, Berlin Heidelberg, 2004)

    Google Scholar 

  18. T. Okuda et al., Phys. Rev. B 72, 144403 (2005)

    Article  ADS  Google Scholar 

  19. S. Okada, I. Terasaki, Jpn. J. Appl. Phys. 44, 1834 (2005)

    Article  ADS  Google Scholar 

  20. Y. Okamoto et al., J. Phys. Soc. Jpn. 75, 023704 (2006)

    Article  ADS  Google Scholar 

  21. M. Lee et al., Nature Materials 5, 537 (2006)

    Article  ADS  Google Scholar 

  22. V.S. Oudovenko et al., Phys. Rev. B 73, 035120 (2006)

    Article  ADS  Google Scholar 

  23. Y. Ono et al., Jpn. J. Appl. Phys. 46, 1071 (2007)

    Article  ADS  Google Scholar 

  24. G.B. Wilson-Short et al., Phys. Rev. B 75, 035121 (2007)

    Article  ADS  Google Scholar 

  25. Y. Ishida et al., J. Phys. Soc. Jpn. 76, 103709 (2007)

    Article  ADS  Google Scholar 

  26. K. Kuroki, R. Arita, J. Phys. Soc. Jpn. 76, 083707 (2007)

    Article  ADS  Google Scholar 

  27. T. Motohashi et al., Phys. Rev. B 83, 195128 (2011)

    Article  ADS  Google Scholar 

  28. W. Xu, C. Weber, G. Kotliar, Phys. Rev. B 84, 035114 (2011)

    Article  ADS  Google Scholar 

  29. M. Uchida et al., Phys. Rev. B 83, 165127 (2011)

    Article  ADS  Google Scholar 

  30. M. Matsuo et al., Phys. Rev. B 84, 153107 (2011)

    Article  ADS  Google Scholar 

  31. J. Hejtmánek, Z. Jirák, J. Šebek, Phys. Rev. B 92, 125106 (2015)

    Article  ADS  Google Scholar 

  32. I. Terasaki, APL Materials 4, 104501 (2016)

    Article  ADS  Google Scholar 

  33. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Thomson Learning, U. K., 1976)

    MATH  Google Scholar 

  34. W. Sir, Thomson, Mathematical and Physical papers, vol. 1 (Cambridge University Press, Cambridge, 1882)

    Google Scholar 

  35. M. Kohler, Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 3, 49 (1951)

    Google Scholar 

  36. P.M. Chaikin, G. Beni, Phys. Rev. B 13, 647 (1976)

    Article  ADS  Google Scholar 

  37. A. Oguri, S. Maekawa, Phys. Rev. B 41, 6977 (1990)

    Article  ADS  Google Scholar 

  38. G. Pálsson, G. Kotliar, Phys. Rev. Lett. 80, 4775 (1998)

    Article  ADS  Google Scholar 

  39. H. Eskes, M.B.J. Meinders, G.A. Sawatzky, Phys. Rev. Lett. 67, 1035 (1991)

    Article  ADS  Google Scholar 

  40. Y. Ohta et al., Phys. Rev. B 46, 14022 (1992)

    Article  ADS  Google Scholar 

  41. M.B.J. Meinders, H. Eskes, G.A. Sawatzky, Phys. Rev. B 48, 3916 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Tsutsui, S. Maekawa, S. Okamoto, M. Mori, and M. Matsuo for helpful discussions. This paper is dedicated to the memory of Professor Sumio Ishihara, who recently passed away, for his kind hospitality and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Koshibae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koshibae, W. (2021). Thermoelectric Properties of Cobalt Oxides and Other Doped Mott Insulators. In: Okimoto, Y., Saitoh, T., Kobayashi, Y., Ishihara, S. (eds) Spin-Crossover Cobaltite. Springer Series in Materials Science, vol 305. Springer, Singapore. https://doi.org/10.1007/978-981-15-7929-5_7

Download citation

Publish with us

Policies and ethics