Skip to main content

Electrophysiological Study Including EP, EMG, NCS

  • Chapter
  • First Online:
Surgery of Spinal Cord Tumors Based on Anatomy
  • 538 Accesses

Abstract

Diverse electrophysiological studies, including evoked potential, electromyography, and nerve conduction studies, are currently used in the operating room to spare the function of the spinal cord during surgery. Here, we dealt with the basic principles, advantages, and limitations of each electrophysiological study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rutkove SB. Introduction to volume conduction. Clinical neurophysiology primer. p. 43.

    Google Scholar 

  2. Available from https://cdn.ymaws.com/www.asnm.org/resource/resmgr/docs/INTRAOPERATIVE_MONITORING_US.pdf.

  3. Minahan R, et al. Anterior spinal cord injury with preserved neurogenic’motor’evoked potentials. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2001;112(8):1442.

    Article  CAS  Google Scholar 

  4. Burke D, et al. Trial-to-trial variability of corticospinal volleys in human subjects. Electroencephalogr Clin Neurophysiol. 1995;97(5):231.

    CAS  PubMed  Google Scholar 

  5. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: Technical description. Neurosurgery. 1993;32(2):219.

    Article  CAS  Google Scholar 

  6. Kim D-G, et al. Intraoperative motor-evoked potential disappearance versus amplitude-decrement alarm criteria during cervical spinal surgery: A long-term prognosis. J Clin Neurol (Seoul, Korea). 2017;13(1):38.

    Article  Google Scholar 

  7. Jin S, et al. Multimodal intraoperative monitoring during intramedullary spinal cord tumor surgery. Acta Neurochir. 2015;157(12):2149.

    Article  Google Scholar 

  8. Kim J, et al. Effect of peripheral nerve tetanic stimulation on the inter-trial variability and accuracy of transcranial motor-evoked potential in brain surgery. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2016;127(5):2208.

    Article  Google Scholar 

  9. Kothbauer K. Intraoperative neurophysiologic monitoring for intramedullary spinal-cord tumor surgery. Neurophysiol Clin/Clin Neurophysiol. 2007;37(6):407.

    Google Scholar 

  10. Ulkatan S, et al. Monitoring of scoliosis surgery with epidurally recorded motor evoked potentials (D wave) revealed false results. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2006;117(9):2093.

    Article  CAS  Google Scholar 

  11. Preston DC, Shapiro BE. Electromyography and neuromuscular disorders E-book: Clinical-electrophysiologic correlations (Expert Consult-Online and Print). Elsevier Health Sciences; 2012.

    Google Scholar 

  12. Harper C, Daube J. Facial nerve electromyography and other cranial nerve monitoring. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 1998;15(3):206.

    CAS  Google Scholar 

  13. Layzer R. Neuromyotonia and myokymia.

    Google Scholar 

  14. Skinner S, et al. Electromyography detects mechanically-induced suprasegmental spinal motor tract injury: Review of decompression at spinal cord level. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2009;120(4):754.

    Article  Google Scholar 

  15. Galbraith J, Thibault L, Matteson D. Mechanical and electrical responses of the squid giant axon to simple elongation. J Biomech Eng. 1993;115(1):13.

    Article  CAS  Google Scholar 

  16. Hahn A, et al. Neuromyotonia in hereditary motor neuropathy. J Neurol Neurosurg Psychiatry. 1991;54(3):230.

    Article  CAS  Google Scholar 

  17. Gunnarsson T, et al. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: Correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine. 2004;29(6):677.

    Article  Google Scholar 

  18. Deletis V, et al. Intraoperative identification of the corticospinal tract and dorsal column of the spinal cord by electrical stimulation. J Neurol Neurosurg Psychiatry. 2018;89(7):754.

    Article  Google Scholar 

  19. Glassman S, et al. A prospective analysis of intraoperative electromyographic monitoring of pedicle screw placement with computed tomographic scan confirmation. Spine. 1995;20(12):1375.

    Article  CAS  Google Scholar 

  20. Gandhi R, Curtis C, Cohen-Gadol A. High-resolution direct microstimulation mapping of spinal cord motor pathways during resection of an intramedullary tumor. J Neurosurg Spine. 2015;22(2):205.

    Article  Google Scholar 

  21. Deletis V, et al. Letter to the Editor: Electrical activity in limb muscles after spinal cord stimulation is not specific for the corticospinal tract. J Neurosurg Spine. 2017;26(2):267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Min Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, SM. (2021). Electrophysiological Study Including EP, EMG, NCS. In: Chung, C.K. (eds) Surgery of Spinal Cord Tumors Based on Anatomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-7771-0_17

Download citation

Publish with us

Policies and ethics