Skip to main content

A Novel CNFET-Based CCCDTA and Its Application as a Schmitt Trigger

  • Conference paper
  • First Online:
Advances in Smart Grid Automation and Industry 4.0

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 693))

  • 550 Accesses

Abstract

The current paper presents the design of CNFET-based Current Controlled Current Differencing Transconductance Amplifier (CNCCCDTA) Current Mode Building Block (CMBB). The proposed CMBB is realized in 32 nm CNFET technology and its performance has been examined using HSPICE. The Schmitt trigger circuit proposed in this paper is comprised of a single CNCCCDTA CMBB and no passive components. The HSPICE software is used to evaluate the function of the proposed Schmitt trigger circuit. The simulated results are presented. The simulated temperature stability of CNCCCDTA Schmitt trigger is 0.0000003%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang CS, Yuan SY, Kuo SY (1997) Full-swing BiCMOS Schmitt trigger. IEE Proc Circ Dev Syst 144(5):303–308

    Article  Google Scholar 

  2. Cornmercon JC, Badard R (2002) Schmitt trigger oscillator and its synchronisation by an external square oscillator. IEEE Proc Circ Dev Syst 149(4):221–226

    Article  Google Scholar 

  3. Schmıtt OH (1938) A thermionic trigger. J Sci Instrum 15(1):24–26

    Article  Google Scholar 

  4. Atul K, Chaturvedı B, Sudhanshu M (2017) A fully electronically controllable Schmitt trigger and duty cycle-modulated waveform generator. Int J Circuit Theory Appl. https://doi.org/10.1002/cta.2307

    Article  Google Scholar 

  5. Mınaeı S, Yuce E (2012) A simple schmitt trigger circuit with grounded passive elements and its application to square/triangular generator. Circ Syst Sign Process 31:877–888

    Article  Google Scholar 

  6. Das R, Banerjeeb K, Chakraborthy A, Mondal L (2016) Differential difference current conveyor based Schmitt trigger circuit and its application. Int J Recent Innov Trends Comput Commun 4(8):69–72

    Google Scholar 

  7. Kım H, Kım HJ, Chung WS (2007) Pulse width modulation circuits using CMOS OTAs. IEEE Trans Circ Syst-I 54(9):1869–1878

    Article  Google Scholar 

  8. Sırıpruchyannun M, Wardkeın P (2003) A fully independently adjustable, integrable simple current controlled oscillator and derivative PWM signal generator. IEICE Trans Fund Electron Commun Comput Sci 86:3119–3126

    Google Scholar 

  9. Srınıvasulu A, Rukmını MSS, Sarada M, Ram MP, Prasad S (2014) Pulse width modulator based on second generation current conveyor. İn: Proceedings of the IEEE ınternational conference on devices, circuits and communications, Ranchi, India, pp 1–4. doi: https://doi.org/10.1109/ICDCCom.2014.7024740

  10. Srınıvasulu A (2009) Current conveyor-based square-wave generator with tunable grounded resistor/capacitor. In: International conference on applied electronics (IEEE AETC-09), Pilsen, Czech Republic, pp 233–236

    Google Scholar 

  11. Kar SK, Sen S (2011) Tunable square-wave generator for integrated sensor applications. IEEE Trans Instrum Meas 60(10):3369–3375

    Article  Google Scholar 

  12. Sılapan P, Sırıpruchyanun M (2009) A simple current-mode Schmitt trigger employing only single MO-CTTA. İn: Proceedings of ınternational conference on electrical engineering/electronics, computer, telecommunications and ınformation technology (IEEE-ECTI), Pattaya, Thailand

    Google Scholar 

  13. Sonı GS, Ansarı MS (2014) Current-mode electronically-tunable Schmitt trigger using single 65 nm ±0.75V CMOS CDTA. İn: Proceedings of IEEE ınternational conference on signal propagation and computer technology (ICSPCT), pp137–141, Ajmer, India

    Google Scholar 

  14. Adel S, Smith KC (1998) Microelectronics circuits, 4th edn. Oxford University Press, Oxford, pp 1002–1005

    Google Scholar 

  15. Avırenı S (2011) Current conveyor based Schmitt trigger and its applications as a relaxation oscillator. Int J Circ Theo Appl 39(6):679–686. https://doi.org/10.1002/cta.669

    Article  Google Scholar 

  16. Das R, Banerjeeb K (2016) A simple current mode schmitt trigger circuit based on single CCDDCCTA without employing any passive components. Int J Innov Emerg Res Eng 3(8):17–21

    Google Scholar 

  17. Ferrı G, Guerrını NC (2003) Low-voltage low-power CMOS current conveyors. Kluwer Academic, London, UK

    Google Scholar 

  18. Maghami MH, Sodagar AM (2011) Fully-integrated, large-time-constant, low-pass, Gm-C filter based on current conveyors. İn: Proceedings of IEEE ınternational conference on electronics, circuits and systems (ICECS), pp 281–284, Beirut

    Google Scholar 

  19. Mısurec J, Koton J (2012) Schmitt trigger with controllable hysteresis using current conveyors. Int J Adv Telecommun Electrotech Sign Syst 1(1):26–30

    Google Scholar 

  20. Srinivasulu A (2012) Current conveyor based relaxation oscillator with tunable grounded resistor/capacitor. Int J Des Anal Tools Circ Syst 3(2):1–7

    Google Scholar 

  21. Cataldo GD, Palumbo G, Pennısı S (1995) A Schmitt trigger by means of a CCII+. Int J Circuit Theory Appl 23:161–165

    Article  Google Scholar 

  22. Kım K, Cha HW, Chung WS (1997) OTA-R Schmitt trigger with independently controllable threshold and output voltage levels. Electron Lett 33(13):1103–1105

    Article  Google Scholar 

  23. Kumngern M (2012) Realization of electronically tunable first-order all-pass filter using single-ended OTA. In: Proceedings of IEEE symposium on industrial electronics and applications (ISIEA), Bandung, Indonesia, pp 100–103

    Google Scholar 

  24. Lo YK, Chıen HC (2007) Switch controllable OTRA based square/triangular waveform generator. IEEE Trans Circ Syst-II-II 54(12):1110–1114

    Google Scholar 

  25. Shaker, P. C., Srınıvasulu, A (2014) Quadrature oscillator using operational transresistance amplifier. İn Proceedings of the IEEE ınternational conference on applied electronics (IEEE AEIC-14), pp 117–120, Pilsen, Czech Republic. Doi: https://doi.org/10.1109/AE.2014.7011681

  26. Srinivasulu A, Pıttala CS (2014) Grounded resistance/capacitance-controlled sinusoidal oscillators using operational transresistance amplifier. WSEAS Trans Circ Syst 13:145–152

    Google Scholar 

  27. Lo YK, Chıen HC, Chıu HJ (2009) Current-input OTRA Schmitt trigger with dual hysteresis modes. Int J Circ Theo Appl 38(7):739–746

    Article  Google Scholar 

  28. Oner. S. E, Koksal. M, Sagbas. M (2006) Electronically controllable biquads using single CDBA. İn: Proceedings of the IEEE ınternational symposium in circuits and systems (ISCAS), Island of Kos, pp 3333–3336

    Google Scholar 

  29. Srivyshnavi, T., Srinivasulu. A (2015) A current mode Schmitt trigger based on current differencing transconductance amplifier. İn: Proceedings of 3rd IEEE ınternational conference on signal processing, communication and networking (ICSCN), pp 1–4. Doi: https://doi.org/10.1109/ICSCN.2015.7219884

  30. Keskin AU, Biolek D (2006) Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc Circ Dev Syst 153(3):214–218

    Article  Google Scholar 

  31. Bıolek, D (2003) CDTA–building block for current-mode analog signal processing. İn: Proceedings of the European conference on circuit theory and design, pp 397–400

    Google Scholar 

  32. AK Ersi, KH Hakan (2016) A new CMOS ZC-CDTA realization and its filter applications. Turk J Electr Eng Comput Sci 24:746–761

    Article  Google Scholar 

  33. Pandey N, Paul SK (2011) Single CDTA-based current mode all-pass filter and its applications. J Electr Comput Eng Article ID 897631:5p. https://doi.org/10.1155/2011/897631

  34. Suma M, Reddy VV, Srinivasulu A (2016) Current mode Schmitt trigger based on ZC-current differencing transconductance amplifier. İn: Proceedings of IEEE ınternational conference on ınventive computation technologies, Coimbatore, pp 1–5. Doi:https://doi.org/10.1109/INVENTIVE.2016.7823226

  35. Nagalakshmi K, Srinivasulu A, Cristian Ravariu C, Vijay V, Krishna VVSV (2018) A novel simple schmitt trigger circuit using CDTA and its application as a square-triangular waveform generator. J Modern Technol Eng 3(3):205–216

    Google Scholar 

  36. Siripruchyanuna M, Jaiklab W (2008) CMOScurrent-controlled current differencing transconductance amplifier and applications to analog signal processing. Int J Electron Commun (AEÜ) 62:277–287

    Article  Google Scholar 

  37. https://www.circuitstoday.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avireni Srinivasulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, J., Ritambhara, Srinivasulu, A. (2021). A Novel CNFET-Based CCCDTA and Its Application as a Schmitt Trigger. In: Reddy, M.J.B., Mohanta, D.K., Kumar, D., Ghosh, D. (eds) Advances in Smart Grid Automation and Industry 4.0. Lecture Notes in Electrical Engineering, vol 693. Springer, Singapore. https://doi.org/10.1007/978-981-15-7675-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7675-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7674-4

  • Online ISBN: 978-981-15-7675-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics