Skip to main content

Angiography Using Fluorescein and Indocyanine Green Dye

  • Chapter
  • First Online:
Macular Surgery

Abstract

Fluorescein angiography and indocyanine green angiographies are investigations commonly performed for the evaluation of retinal and choroidal vascular circulatory changes. This chapter provides an overview on the principles of fluorescein and indocyanine green angiographies and describe their applications in the assessment of various retinal diseases and how they can be used in the preoperative or postoperative evaluation of macular surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121:1435–44.

    Article  PubMed Central  Google Scholar 

  2. Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Sogawa K, Yokota H, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160:35–44.

    Article  PubMed Central  Google Scholar 

  3. Kashani AH, Lee SY, Moshfeghi A, Durbin MK, Puliafito CA. Optical coherence tomography angiography of retinal venous occlusion. Retina. 2015;35:2323–31.

    Article  Google Scholar 

  4. Samara WA, Say EA, Khoo CT, Higgins TP, Magrath G, Ferenczy S, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35:2188–95.

    Article  Google Scholar 

  5. Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normal and diabetic retinopathy patients. Retina. 2015;35:2353–63.

    Article  PubMed Central  Google Scholar 

  6. Silva PS, Cavallerano JD, Haddad NM, Kwak H, Dyer KH, Omar AF, et al. Peripheral lesions Identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology. 2015;122:949–56.

    Article  PubMed Central  Google Scholar 

  7. Wessel MM, Aaker GD, Parlitsis G, Cho M, D'Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. 2012;32:785–91.

    Article  PubMed Central  Google Scholar 

  8. Halperin LS, Olk RJ, Soubrane G, Coscas G. Safety of fluorescein angiography during pregnancy. Am J Ophthalmol. 1990;109:563–6.

    Article  CAS  PubMed Central  Google Scholar 

  9. Gass JD. Idiopathic senile macular hole. Its early stages and pathogenesis. Arch Ophthalmol. 1988;106:629–39.

    Article  CAS  Google Scholar 

  10. Liu J, Qian Y, Yang S, Yan L, Wany Y, Gao M, et al. Pathophysiological correlations between fundus fluorescein angiography and optical coherence tomography results in patients with idiopathic epiretinal membranes. Exp Ther Med. 2017;14:5785–92.

    PubMed Central  Google Scholar 

  11. Michalewski J, Michalewski Z, Cisiecki S, Nawrocki J. Morphologically functional correlations of macular pathology connected with epiretinal membrane studied by spectral optical coherence tomography (SOCT). Greaefes Arch Clin Exp Ophthalmol. 2007;245:1623–31.

    Article  Google Scholar 

  12. Viola F, Dell’Arti L, Benatti E, Invernizzi A, Mapelli C, Ferrar F, et al. Choroidal findings in dome-shaped macula in highly myopic eyes: a longitudinal study. Am J Ophthalmol. 2015;159:44–52.

    Article  Google Scholar 

  13. Chhablani J, Deepa MJ, Tyagi M, Narayanan R, Kozak I. Fluorescein angiography and optical coherence tomography in myopic choroidal neovascularization. Eye (Lond). 2015;29:519–24.

    Article  CAS  Google Scholar 

  14. Parolini B, Frisina R, Pinackatt S, Gasparotti R, Gatti E, Baldi A, et al. Indication and results of a new L-shaped macular buckle to support a posterior staphyloma in high myopia. Retina. 2015;35:2469–82.

    Article  Google Scholar 

  15. Iacono P, Battaglia Parodi M, Iuliano L, Bandello F. How vitreomacular interface modifies the efficacy of anti-VEGF therapy for choroidal neovascularization. Retina. 2018;38:84–90.

    Article  Google Scholar 

  16. Terasaki H, Miyake Y, Awaya S. Fluorescein angiography of peripheral retina and pars plana during vitrectomy for proliferative diabetic retinopathy. Am J Ophthalmol. 1997;123:370–6.

    Article  CAS  Google Scholar 

  17. Jaulim A, Ahmed B, Khanam T, Chatziralli IP, et al. Branch retinal vein occlusion epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina. 2013;33:901–10.

    Article  Google Scholar 

  18. Varma DD, Cugati S, Lee AW, Chen CS. A review of central retinal artery occlusion: clinical presentation and management. Eye (Lond). 2013;27:688–97.

    Article  CAS  Google Scholar 

  19. Kadonosono K, Yamane S, Arakawa A, Inoue M, Yamakawa T, Uchio E, et al. Endovascular cannulation with a microneedle for central retinal vein occlusion. JAMA Ophthalmol. 2013;131:783–6.

    Article  PubMed Central  Google Scholar 

  20. Kadonosono K, Yamane S, Inoue M, Yamakawa T, Uchio E. Intra-arterial arterial cannulation using a microneedle for central retinal artery occlusion. Sci Rep. 2018;8:1360.

    Article  PubMed Central  Google Scholar 

  21. Antcliff RJ, Stanford MR, Chauhan DS, Graham EM, Spalton DJ, Shilling JS, et al. Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis. Ophthalmology. 2000;107:593–9.

    Article  CAS  Google Scholar 

  22. Jones NP, Sala-Puigdollers A, Stanga PE. Ultra-widefield fundus fluorescein angiography in the diagnosis and management of retinal vasculitis. Eye (Lond). 2017;31:1546–9.

    Article  CAS  Google Scholar 

  23. Angora C, Lepore F, Molle F, Paliara MM, De Santis R, Orazi L, et al. Fluorescein angiography in the management of Coats’ disease laser treatment. Invest Ophthalmol Vis Sci. 2007;48:4166.

    Google Scholar 

  24. Maclaren RE, Uppal GS, Balaggan KS, Tufail A, Munro PM, Milliken AB, et al. Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology. 2007;114:561–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Y. Y. Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szeto, S.K.H., Lai, T.Y.Y. (2020). Angiography Using Fluorescein and Indocyanine Green Dye. In: Chang, A., Mieler, W.F., Ohji, M. (eds) Macular Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-15-7644-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7644-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7642-3

  • Online ISBN: 978-981-15-7644-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics