Skip to main content

Apoptotic Cell Death: Important Cellular Process as Chemotherapeutic Target

  • Chapter
  • First Online:
Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models
  • 405 Accesses

Abstract

Apoptosis is a biological feature, which causes programmed cell death. It consists of two pathways, namely extrinsic and intrinsic, and mitochondria areĀ the site of apoptotic process completion. An abnormality in theĀ apoptotic process can make cells immoral, which is one of the major characteristics of cancer cell formation and cancer development. Chemotherapeutic molecules, which have been used as anticancer drugs, or drugs under investigations, have mostly designed in a way that they can revert apoptotic abnormalities or induce apoptosis. This book chapter discusses the apoptotic process and its abnormalities in cancer cells, and how chemotherapeutic drugs can induce apoptosis, with most advanced and updated findings on mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maghsoudi N, Zaketi Z, Lockshin R (2012) Programmed cell death and apoptosisā€”where it came from and where it is going: from Elie Metchnikoff to the control of caspases. Exp Oncol 34:146ā€“152

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Raff M, Alberts B, Lewis J et al (2002) Molecular biology of the cell, 4th edn. National Center for Biotechnology Informationƕs Bookshelf

    Google ScholarĀ 

  3. Knight T, Luedtke D, Edwards H et al (2019) A delicate balanceā€“the BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem Pharmacol 162:250ā€“261

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Khan KH, Blanco-Codesido M, Molife LR (2014) Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol 90:200ā€“219

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  5. Koch A, Roth W, Steffek T et al (2008) Impact of apoptosis in acute rejection episodes after heart transplantation: immunohistochemical examination of right ventricular myocardial biopsies. Transplant Proc 40:943ā€“946

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Mirzayans R, Andrais B, Kumar P et al (2017) Significance of wild-type p53 signaling in suppressing apoptosis in response to chemical genotoxic agents: impact on chemotherapy outcome. Int J Mol Sci 18:928

    ArticleĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  7. Curtin JF, Cotter TG (2003) Apoptosis: historical perspectives. Essays Biochem 39:1ā€“10

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  8. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer 26:239ā€“257

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Zaman S, Wang R, Gandhi V (2014) Targeting the apoptosis pathway in hematologic malignancies. Leuk Lymphoma 55:1980ā€“1992

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27:S2ā€“S19

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495ā€“516

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Lopez J, Tait S (2015) Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer 112:957ā€“962

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Hassan M, Watari H, AbuAlmaaty A et al (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150845

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol 7:a006080

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  15. Goldar S, Khaniani MS, Derakhshan SM et al (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 16:2129ā€“2144

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  16. Goonesinghe A, Mundy ES, Smith M et al (2005) Pro-apoptotic Bid induces membrane perturbation by inserting selected lysolipids into the bilayer. Biochem J 387:109ā€“118

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725ā€“731

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Szegezdi E, Logue SE, Gorman AM et al (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880ā€“885

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Saleem M, Qadir MI, Perveen N et al (2013) Inhibitors of apoptotic proteins: new targets for anticancer therapy. Chem Biol Drug Des 82:243ā€“251

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Fernald K, Kurokawa M (2013) Evading apoptosis in cancer. Trends Cell Biol 23:620ā€“633

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Dewson G, Kluck RM (2010) Bcl-2 family-regulated apoptosis in health and disease. Cell Health Cytoskelet 2:22

    Google ScholarĀ 

  22. Wei Y, Fan T, Yu M (2008) Inhibitor of apoptosis proteins and apoptosis. Acta Biochim Biophys Sin Shanghai 40:278ā€“288

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907ā€“1916

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Oā€™Brien MA, Kirby R (2008) Apoptosis: a review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Car 18:572ā€“585

    ArticleĀ  Google ScholarĀ 

  25. Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118:265ā€“267

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155ā€“162

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Pukac L, Kanakaraj P, Humphreys R et al (2005) HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 92:1430ā€“1441

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Leong S, Cohen RB, Gustafson DL et al (2009) Mapatumumab, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: results of a phase I and pharmacokinetic study. J Clin Oncol 27:4413ā€“4421

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Mom CH, Verweij J, Oldenhuis CN et al (2009) Mapatumumab, a fully human agonistic monoclonal antibody that targets TRAIL-R1, in combination with gemcitabine and cisplatin: a phase I study. Clin Cancer Res 15:5584ā€“5590

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Sun W, Nelson D, Alberts S et al (2011) Phase Ib study of mapatumumab in combination with sorafenib in patients with advanced hepatocellular carcinoma (HCC) and chronic viral hepatitis. J Clin Oncol 29:261ā€“261

    ArticleĀ  Google ScholarĀ 

  31. Georgakis GV, Li Y, Humphreys R et al (2005) Activity of selective fully human agonistic antibodies to the TRAIL death receptors TRAIL-R1 and TRAIL-R2 in primary and cultured lymphoma cells: induction of apoptosis and enhancement of doxorubicin- and bortezomib-induced cell death. Br J Haematol 130:501ā€“510

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Kaplan-Lefko PJ, Graves JD, Zoog SJ et al (2010) Conatumumab, a fully human agonist antibody to death receptor 5, induces apoptosis via caspase activation in multiple tumor types. Cancer Biol Ther 9:618ā€“631

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Paz-Ares L, BĆ”lint B, de Boer RH et al (2013) A randomized phase 2 study of paclitaxel and carboplatin with or without conatumumab for first-line treatment of advanced nonā€“small-cell lung cancer. J Thorac Oncol 8:329ā€“337

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Demetri GD, Le Cesne A, Chawla SP et al (2012) First-line treatment of metastatic or locally advanced unresectable soft tissue sarcomas with conatumumab in combination with doxorubicin or doxorubicin alone: a phase I/II open-label and double-blind study. Eur J Cancer 48:547ā€“563

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Kindler H, Richards D, Garbo L et al (2012) A randomized, placebo-controlled phase 2 study of ganitumab (AMG 479) or conatumumab (AMG 655) in combination with gemcitabine in patients with metastatic pancreatic cancer. Ann Oncol 23:2834ā€“2842

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Camidge DR, Herbst RS, Gordon MS et al (2010) A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies. Clin Cancer Res 16:1256ā€“1263

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Forero-Torres A, Shah J, Wood T et al (2010) Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer Biother Radiopharm 25:13ā€“19

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Sharma S, de Vries EG, Infante JR et al (2014) Safety, pharmacokinetics, and pharmacodynamics of the DR5 antibody LBY135 alone and in combination with capecitabine in patients with advanced solid tumors. Investig New Drugs 32:135ā€“144

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47ā€“59

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Emi M, Kim R, Tanabe K et al (2005) Targeted therapy against Bcl-2-related proteins in breast cancer cells. Breast Cancer Res 7:R940

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Kim R, Emi M, Matsuura K et al (2007) Antisense and nonantisense effects of antisense Bcl-2 on multiple roles of Bcl-2 as a chemosensitizer in cancer therapy. Cancer Gene Ther 14:1ā€“11

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Jahrsdƶrfer B, Jox R, MĆ¼hlenhoff L et al (2002) Modulation of malignant B cell activation and apoptosis by bcl-2 antisense ODN and immunostimulatory CpG ODN. J Leukoc Biol 72:83ā€“92

    PubMedĀ  Google ScholarĀ 

  43. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126ā€“1132

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Cao XX, Mohuiddin I, Ece F et al (2001) Histone deacetylase inhibitor downregulation of bcl-xl gene expression leads to apoptotic cell death in mesothelioma. Am J Respir Cell Mol Biol 25:562ā€“568

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Kang MH, Wan Z, Kang YH et al (2008) Mechanism of synergy of N-(4-hydroxyphenyl) retinamide and ABT-737 in acute lymphoblastic leukemia cell lines: Mcl-1 inactivation. J Natl Cancer Inst 100:580ā€“595

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Loberg RD, McGregor N, Ying C et al (2007) In vivo evaluation of AT-101 (R-(āˆ’)-gossypol acetic acid) in androgen-independent growth of VCaP prostate cancer cells in combination with surgical castration. Neoplasia 9:1030ā€“1037

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Zerp SF, Stoter R, Kuipers G et al (2009) AT-101, a small molecule inhibitor of anti-apoptotic Bcl-2 family members, activates the SAPK/JNK pathway and enhances radiation-induced apoptosis. Radiat Oncol 4:47

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  48. Mohammad RM, Wang S, Aboukameel A et al (2005) Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL [(āˆ’)-gossypol] against diffuse large cell lymphoma. Mol Cancer Ther 4:13ā€“21

    CASĀ  PubMedĀ  Google ScholarĀ 

  49. Nguyen M, Marcellus RC, Roulston A et al (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A 104:19512ā€“19517

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Oltersdorf T, Elmore SW, Shoemaker AR et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677ā€“681

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Tse C, Shoemaker AR, Adickes J et al (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421ā€“3428

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Ashkenazi A, Fairbrother WJ, Leverson JD et al (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16:273ā€“284

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Morales M-C, PĆ©rez-Yarza G, Nieto-Rementeria N et al (2005) Intracellular glutathione levels determine cell sensitivity to apoptosis induced by the antineoplastic agent N-(4-hydroxyphenyl) retinamide. Anticancer Res 25:1945ā€“1951

    CASĀ  PubMedĀ  Google ScholarĀ 

  54. Roberts AW, Seymour JF, Brown JR et al (2012) Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 30:488ā€“496

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Vandenberg CJ, Cory S (2013) ABT-199, a new Bcl-2ā€“specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood 121:2285ā€“2288

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Pekarsky Y, Balatti V, Croce CM (2018) BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ 25:21ā€“26

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Souers AJ, Leverson JD, Boghaert ER et al (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19:202ā€“208

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Flinn IW, Brunvand M, Choi MY et al (2015) Safety and efficacy of a combination of venetoclax (GDC-0199/ABT-199) and obinutuzumab in patients with relapsed/refractory or previously untreated chronic lymphocytic leukemia-results from a phase 1b study (GP28331). Blood 126:494

    ArticleĀ  Google ScholarĀ 

  59. Ma S, Brander DM, Seymour JF et al (2015) Deep and durable responses following venetoclax (ABT-199/GDC-0199) combined with rituximab in patients with relapsed/refractory chronic lymphocytic leukemia: results from a phase 1b study. Blood 126:830

    ArticleĀ  Google ScholarĀ 

  60. Lessene G, Czabotar PE, Sleebs BE et al (2013) Structure-guided design of a selective BCL-X L inhibitor. Nat Chem Biol 9:390ā€“397

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Zhang H, Xue J, Hessler P et al (2015) Genomic analysis and selective small molecule inhibition identifies BCL-X L as a critical survival factor in a subset of colorectal cancer. Mol Cancer 14:126

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  62. Leverson J, Zhang H, Chen J et al (2015) Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis 6:e1590

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Caenepeel S, Brown SP, Belmontes B et al (2018) AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov 8:1582ā€“1597

    CASĀ  PubMedĀ  Google ScholarĀ 

  64. Daly T, Ippolito T, Gu JJ et al (2019) MCL-1 inhibition by the selective MCL-1 inhibitor AMG-176 induces in vitro activity against burkitt lymphoma cell lines and synergistically enhances the cytotoxic effect of chemotherapy and BH3 mimetics. Blood 134:5303

    ArticleĀ  Google ScholarĀ 

  65. Rathore R, McCallum JE, Varghese E et al (2017) Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis 22:898ā€“919

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Qin Q, Zuo Y, Yang X et al (2014) Smac mimetic compound LCL161 sensitizes esophageal carcinoma cells to radiotherapy by inhibiting the expression of inhibitor of apoptosis protein. Tumour Biol 35:2565ā€“2574

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Tchoghandjian A, SoubƩran A, Tabouret E et al (2016) Inhibitor of apoptosis protein expression in glioblastomas and their in vitro and in vivo targeting by SMAC mimetic GDC-0152. Cell Death Dis 7:e2325

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  68. Condon SM, Mitsuuchi Y, Deng Y et al (2014) Birinapant, a smac-mimetic with improved tolerability for the treatment of solid tumors and hematological malignancies. J Med Chem 57:3666ā€“3677

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Eckhardt S, Gallant G, Sikic B et al (2010) Phase I study evaluating the safety, tolerability, and pharmacokinetics (PK) of HGS1029, a small-molecule inhibitor of apoptosis protein (IAP), in patients (pts) with advanced solid tumors. J Clin Oncol 28:2580ā€“2580

    ArticleĀ  Google ScholarĀ 

  70. Belz K, Schoeneberger H, Wehner S et al (2014) Smac mimetic and glucocorticoids synergize to induce apoptosis in childhood ALL by promoting ripoptosome assembly. Blood 124:240ā€“250

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. LaCasse EC, Cherton-Horvat GG, Hewitt KE et al (2006) Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin Cancer Res 12:5231ā€“5241

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  72. Nakahara T, Kita A, Yamanaka K et al (2007) YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res 67:8014ā€“8021

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Carrasco RA, Stamm NB, Marcusson E et al (2011) Antisense inhibition of survivin expression as a cancer therapeutic. Mol Cancer Ther 10:221ā€“232

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Li J, Khan M, Wei C et al (2017) Thymoquinone inhibits the migration and invasive characteristics of cervical cancer cells SiHa and CaSki in vitro by targeting epithelial to mesenchymal transition associated transcription factors Twist1 and Zeb1. Molecules 22:2105

    ArticleĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  75. Tania M, Shawon J, Saif K et al (2019) Cordycepin downregulates Cdk-2 to interfere with cell cycle and increases apoptosis by generating ROS in cervical cancer cells: in vitro and in silico study. Curr Cancer Drug Targets 19:152ā€“159

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Khan MA, Chen H-c, Wan X-x et al (2013) Regulatory effects of resveratrol on antioxidant enzymes: a mechanism of growth inhibition and apoptosis induction in cancer cells. Mol Cells 35:219ā€“225

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Tamm I, Kornblau SM, Segall H et al (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6:1796ā€“1803

    CASĀ  PubMedĀ  Google ScholarĀ 

  78. Rƶdel F, Frey B, Leitmann W et al (2008) Survivin antisense oligonucleotides effectively radiosensitize colorectal cancer cells in both tissue culture and murine xenograft models. Int J Radiat Oncol Biol Phys 71:247ā€“255

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  79. Farhood B, Najafi M, Salehi E et al (2019) Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J Cell Biochem 120:71ā€“76

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  80. Khan MA, Tania M, Zhang D-z et al (2010) Antioxidant enzymes and cancer. Chinese J Cancer Res 22:87ā€“92

    ArticleĀ  CASĀ  Google ScholarĀ 

  81. Suen D-F, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577ā€“1590

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. He L, He T, Farrar S et al (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532ā€“553

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  83. Morioka S, Omori E, Kajino T et al (2009) TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP. Oncogene 28:2257ā€“2265

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  84. Shi Y, Nikulenkov F, Zawacka-Pankau J et al (2014) ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ 21:612ā€“623

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  85. Hattori K, Naguro I, Runchel C et al (2009) The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal 7:9

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  86. Aggarwal V, Tuli HS, Varol A et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomol Ther 9:735

    CASĀ  Google ScholarĀ 

  87. Coriat R, Leconte M, Kavian N et al (2011) Mangafodipir protects against hepatic ischemia-reperfusion injury in mice. PLoS One 6:e27005

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Son A-R, Ahn J, Song J-Y (2014) Niclosamide enhances ROS-mediated cell death through c-Jun activation. Biomed Pharmacother 68:619ā€“624

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  89. Coriat R, Marut W, Leconte M et al (2011) The organotelluride catalyst LAB027 prevents colon cancer growth in the mice. Cell Death Dis 2:e191

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  90. Cha JH, Choi YJ, Cha SH et al (2012) Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway. Oncol Rep 28:41ā€“48

    CASĀ  PubMedĀ  Google ScholarĀ 

  91. Nicco C, Batteux F (2018) ROS modulator molecules with therapeutic potential in cancers treatments. Molecules 23:84

    ArticleĀ  CASĀ  Google ScholarĀ 

  92. Seymour JF (2016) Effective mitigation of tumor lysis syndrome with gradual venetoclax dose ramp, prophylaxis, and monitoring in patients with chronic lymphocytic leukemia. Ann Hematol 95:1361ā€“1362

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  93. Hu J, Duan Z, Yu G et al (2019) Bcl-2 inhibitors as sensitizing agents for cancer chemotherapy. In: Protein kinase inhibitors as sensitizing agents for chemotherapy. Elsevier, Amsterdam, pp 151ā€“168

    ChapterĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Asaduzzaman Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Junaid, M., Akter, Y., Afrose, S.S., Tania, M., Khan, M.A. (2020). Apoptotic Cell Death: Important Cellular Process as Chemotherapeutic Target. In: Tuli, H.S. (eds) Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Springer, Singapore. https://doi.org/10.1007/978-981-15-7586-0_4

Download citation

Publish with us

Policies and ethics