Skip to main content

Cell Cycle Arrest: An Impending Therapeutic Strategy to Curb Cancer

  • Chapter
  • First Online:
Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models

Abstract

Eukaryotic cell division is divided into several phases and each of these phases has their own control mechanisms. Failure of any of these control mechanisms may lead to development of errors which may be propagated to up-coming generations leading to development of carcinogenic phenotype. Therefore, cell cycle has become an attractive target in anticancer research which is mainly focused on dealing with the regulators and checkpoints involved in the progression of cell cycle. The major components involved in controlling the cell cycle are cyclins, cyclin-dependent kinases (CDKs), and cyclin-dependent kinase inhibitors (CDKIs). Apart from these, an efficient DNA repair system and the proper assembly of spindle fibers also contribute to smooth progression of cell cycle. Therefore, in addition to the great dependency of anticancer research on cyclins, CDKs, and CDKIs, DNA repair system and assembly of spindle fiber also contribute to the foundation of anticancer research. In this chapter, we describe cell cycle and its importance in anticancer research, the clinical studies based on cell cycle to curb neoplastic development, and approaches used in anti-tumor research to counter cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baserga R, Wiebel F (1969) The cell cycle of mammalian cells. Int Rev Exp Pathol 7:1

    CAS  PubMed  Google Scholar 

  2. Norbury C, Nurse P (1992) Animal cell cycles and their control. Annu Rev Biochem 61(1):441–468

    Article  CAS  PubMed  Google Scholar 

  3. McDonald ER, El-Deiry W (2000) Cell cycle control as a basis for cancer drug development. Int J Oncol 16(5):871–957

    CAS  PubMed  Google Scholar 

  4. Scholey JM, Brust-Mascher I, Mogilner A (2003) Cell division. Nature 422(6933):746–752

    Article  CAS  PubMed  Google Scholar 

  5. Bai J, Li Y, Zhang G (2017) Cell cycle regulation and anticancer drug discovery. Cancer Biol Med 14(4):348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–1677

    Article  CAS  PubMed  Google Scholar 

  7. Sobczak-Thepot J et al (1993) Localization of cyclin a at the sites of cellular DNA replication. Exp Cell Res 206(1):43–48

    Article  CAS  PubMed  Google Scholar 

  8. Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13(1):261–291

    Article  CAS  PubMed  Google Scholar 

  9. Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116(2):221–234

    Article  CAS  PubMed  Google Scholar 

  10. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274(5293):1664–1672

    Article  CAS  PubMed  Google Scholar 

  11. Toyoshima H, Hunter T (1994) P27, a novel inhibitor of G1 cyclin-cdk protein kinase activity, is related to P21. Cell 78(1):67–74

    Article  CAS  PubMed  Google Scholar 

  12. Zohny SF et al (2017) The KIP/CIP family members P21^{Waf1/Cip1} and P57^{Kip2} as diagnostic markers for breast cancer. Cancer Biomark 18(4):413–423

    Article  CAS  PubMed  Google Scholar 

  13. Cánepa ET et al (2007) INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 59(7):419–426

    Article  PubMed  CAS  Google Scholar 

  14. El-Deiry WS et al (1994) WAF1/CIP1 is induced in P53-mediated G1 arrest and apoptosis. Cancer Res 54(5):1169–1174

    CAS  PubMed  Google Scholar 

  15. Rao PN, Johnson RT (1970) Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225(5228):159–164

    Article  CAS  PubMed  Google Scholar 

  16. Paulovich AG, Toczyski DP, Hartwell LH (1997) When checkpoints fail. Cell 88(3):315–321

    Article  CAS  PubMed  Google Scholar 

  17. Murray AW (1991) Coordinating cell cycle events. In: Cold spring harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, pp 399–408

    Google Scholar 

  18. Murray A (1994) Cell cycle checkpoints. Curr Opin Cell Biol 6(6):872–876

    Article  CAS  PubMed  Google Scholar 

  19. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    Article  CAS  PubMed  Google Scholar 

  20. Shapiro GI, Edwards CD, Rollins BJ (2000) The physiology of P16 INK4A-mediated G1 proliferative arrest. Cell Biochem Biophys 33(2):189–197

    Article  CAS  PubMed  Google Scholar 

  21. Stewart ZA, Pietenpol JA (2001) P53 signaling and cell cycle checkpoints. Chem Res Toxicol 14(3):243–263

    Article  CAS  PubMed  Google Scholar 

  22. Falck J et al (2002) The DNA damage-dependent intra–S phase checkpoint is regulated by parallel pathways. Nat Genet 30(3):290–294

    Article  PubMed  Google Scholar 

  23. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323

    Article  CAS  PubMed  Google Scholar 

  24. Lim D-S et al (2000) ATM phosphorylates P95/Nbs1 in an S-phase checkpoint pathway. Nature 404(6778):613–617

    Article  CAS  PubMed  Google Scholar 

  25. Zhao S et al (2000) Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405(6785):473–477

    Article  CAS  PubMed  Google Scholar 

  26. Pichierri P, Rosselli F (2004) The DNA crosslink-induced S-phase checkpoint depends on ATR–CHK1 and ATR–NBS1–FANCD2 pathways. EMBO J 23(5):1178–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15(17):2177–2196

    Article  CAS  PubMed  Google Scholar 

  28. Bunz F et al (1998) Requirement for P53 and P21 to sustain G2 arrest after DNA damage. Science 282(5393):1497–1501

    Article  CAS  PubMed  Google Scholar 

  29. Flatt PM et al (2000) P53 regulation of G2 checkpoint is retinoblastoma protein dependent. Mol Cell Biol 20(12):4210–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan TA et al (1999) 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401(6753):616–620

    Article  CAS  PubMed  Google Scholar 

  31. Hermeking H et al (1997) 14-3-3σ is a P53-regulated inhibitor of G2/M progression. Mol Cell 1(1):3–11

    Article  CAS  PubMed  Google Scholar 

  32. Innocente SA, Abrahamson JLA, Cogswell JP, Lee JM (1999) P53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci 96(5):2147–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawabe T et al (2002) Cdc25C interacts with PCNA at G2/M transition. Oncogene 21(11):1717–1726

    Article  CAS  PubMed  Google Scholar 

  34. Musacchio A, Hardwick KG (2002) The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 3(10):731–741

    Article  CAS  PubMed  Google Scholar 

  35. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    Article  PubMed  Google Scholar 

  36. Suri A et al (2012) Cancer testis antigens: a new paradigm for cancer therapy. Onco Targets Ther 1(7):1194–1196

    Google Scholar 

  37. Jagadish N et al (2016) Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. Tumor Biol 37(10):13101–13110

    Article  CAS  Google Scholar 

  38. Kanojia D et al (2013) Sperm associated antigen 9 plays an important role in bladder transitional cell carcinoma. PLoS One 8(12):e81348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sinha A et al (2013) Down regulation of SPAG9 reduces growth and invasive potential of triple-negative breast cancer cells: possible implications in targeted therapy. J Exp Clin Cancer Res 32(1):69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Stewart ZA, Westfall MD, Pietenpol JA (2003) Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol Sci 24(3):139–145

    Article  CAS  PubMed  Google Scholar 

  41. Zheng L, Lee W-H (2001) The retinoblastoma gene: a prototypic and multifunctional tumor suppressor. Exp Cell Res 264(1):2–18

    Article  CAS  PubMed  Google Scholar 

  42. Weinstat-Saslow D et al (1995) Overexpression of cyclin D MRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1(12):1257–1260

    Article  CAS  PubMed  Google Scholar 

  43. Bortner DM, Rosenberg MP (1997) Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol Cell Biol 17(1):453–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang TC et al (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369(6482):669–671

    Article  CAS  PubMed  Google Scholar 

  45. Elsayed YA, Sausville EA (2001) Selected novel anticancer treatments targeting cell signaling proteins. Oncologist 6(6):517–537

    Article  CAS  PubMed  Google Scholar 

  46. Jagadish N et al (2015) A-kinase anchor protein 4 (AKAP4) a promising therapeutic target of colorectal cancer. J Exp Clin Cancer Res 34(1):142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ozbun MA, Butel JS (1995) Tumor suppressor P53 mutations and breast cancer: a critical analysis. In: Advances in cancer research. Elsevier, Amsterdam, pp 71–141

    Google Scholar 

  48. Freedman DA, Wu L, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cellular and Molecular Life Sciences CMLS 55(1):96–107

    Article  CAS  PubMed  Google Scholar 

  49. Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26(15):3453–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Catzavelos C et al (1997) Decreased levels of the cell-cycle inhibitor P27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 3(2):227–230

    Article  CAS  PubMed  Google Scholar 

  51. Porter PL et al (1997) Expression of cell-cycle regulators P27 Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3(2):222–225

    Article  CAS  PubMed  Google Scholar 

  52. Muraoka RS et al (2002) ErbB2/Neu-induced, cyclin D1-dependent transformation is accelerated in P27-haploinsufficient mammary epithelial cells but impaired in P27-null cells. Mol Cell Biol 22(7):2204–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oya M, Schulz WA (2000) Decreased expression of P57 KIP2 MRNA in human bladder cancer. Br J Cancer 83(5):626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cahill DP et al (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392(6673):300–303

    Article  CAS  PubMed  Google Scholar 

  55. Lee H et al (1999) Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol Cell 4(1):1–10

    Article  CAS  PubMed  Google Scholar 

  56. Michel LS et al (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409(6818):355–359

    Article  CAS  PubMed  Google Scholar 

  57. Khanna KK (2000) Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst 92(10):795–802

    Article  CAS  PubMed  Google Scholar 

  58. Weinstein JN et al (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275(5298):343–349

    Article  CAS  PubMed  Google Scholar 

  59. Amundson SA et al (2000) An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 60(21):6101–6110

    CAS  PubMed  Google Scholar 

  60. O’Connor PM et al (1997) Characterization of the P53 tumor suppressor pathway in cell lines of the national cancer institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57(19):4285–4300

    PubMed  Google Scholar 

  61. Scherf U et al (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24(3):236–244

    Article  CAS  PubMed  Google Scholar 

  62. Roberge M et al (1998) High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide. Cancer Res 58(24):5701–5706

    CAS  PubMed  Google Scholar 

  63. Roberge M et al (2000) Cell-based screen for antimitotic agents and identification of analogues of rhizoxin, eleutherobin, and paclitaxel in natural extracts. Cancer Res 60(18):5052–5058

    CAS  PubMed  Google Scholar 

  64. Perego P et al (2000) Yeast mutants as a model system for identification of determinants of chemosensitivity. Pharmacol Rev 52(4):477–492

    CAS  PubMed  Google Scholar 

  65. Simon JA et al (2000) Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of saccharomyces cerevisiae. Cancer Res 60(2):328–333

    CAS  PubMed  Google Scholar 

  66. Norman TC et al (1999) Genetic selection of peptide inhibitors of biological pathways. Science 285(5427):591–595

    Article  CAS  PubMed  Google Scholar 

  67. Spellman PT et al (1998) Comprehensive identification of cell cycle–regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hughes TR et al (2000) Functional discovery via a compendium of expression profiles. Cell 102(1):109–126

    Article  CAS  PubMed  Google Scholar 

  69. Buolamwini JK (2000) Cell cycle molecular targets in novel anticancer drug discovery. Curr Pharm Des 6(4):379–392

    Article  CAS  PubMed  Google Scholar 

  70. Theron T, Binder A, Verheye-Dua F, Böhm L (2000) The role of G2-block abrogation, DNA double-strand break repair and apoptosis in the radiosensitization of melanoma and squamous cell carcinoma cell lines by pentoxifylline. Int J Radiat Biol 76(9):1197–1208

    Article  CAS  PubMed  Google Scholar 

  71. Yao S-L et al (1996) Selective radiosensitization of P53–deficient cells by caffeine–mediated activation of P34 Cdc2 kinase. Nat Med 2(10):1140–1143

    Article  CAS  PubMed  Google Scholar 

  72. Facchinetti MM, De Siervi A, Toskos D, Senderowicz AM (2004) UCN-01-induced cell cycle arrest requires the transcriptional induction of P21waf1/Cip1 by activation of mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway. Cancer Res 64(10):3629–3637

    Article  CAS  PubMed  Google Scholar 

  73. Kawabe T et al (2004) G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3(4):513–519

    CAS  PubMed  Google Scholar 

  74. Peifer C, Alessi DR (2008) Small-molecule inhibitors of PDK1. ChemMedChem 3(12):1810–1838

    Article  CAS  PubMed  Google Scholar 

  75. Senderowicz AM, Sausville EA (2000) Preclinical and clinical development of cyclin-dependent kinase modulators. J Natl Cancer Inst 92(5):376–387

    Article  CAS  PubMed  Google Scholar 

  76. Wang Q et al (1996) UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted P53. J Natl Cancer Inst 88(14):956–965

    Article  CAS  PubMed  Google Scholar 

  77. Yamauchi T, Keating MJ, Plunkett W (2002) UCN-01 (7-hydroxystaurosporine) inhibits DNA repair and increases cytotoxicity in normal lymphocytes and chronic lymphocytic leukemia lymphocytes1 1 supported in part by grants CA32839, CA81534, and P30 CA16672 from the NIH. Mol Cancer Ther 1(4):287–294

    CAS  PubMed  Google Scholar 

  78. Nakajima H et al (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 241(1):126–133

    Article  CAS  PubMed  Google Scholar 

  79. Saito A et al (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci 96(8):4592–4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Piekarz RL et al (2001) Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 98(9):2865–2868

    Article  CAS  PubMed  Google Scholar 

  81. Kashyap D, Mittal S et al (2016) Molecular mechanisms of action of quercetin in cancer: recent advances. Tumor Biol 37(10):12927–12939

    Article  CAS  Google Scholar 

  82. Kashyap D, Mondal R et al (2016) Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumor Biol 37(10):12915–12925

    Article  CAS  Google Scholar 

  83. Kashyap D et al (2017) Mechanistic insight into carnosol-mediated pharmacological effects: recent trends and advancements. Life Sci 169:27–36

    Article  CAS  PubMed  Google Scholar 

  84. Kumar G et al (2015) Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumor Biol 36(6):4005–4016

    Article  CAS  Google Scholar 

  85. Kumar G, Mittal S, Sak K, Tuli HS (2016) Molecular mechanisms underlying chemopreventive potential of curcumin: current challenges and future perspectives. Life Sci 148:313–328

    Article  CAS  PubMed  Google Scholar 

  86. Dickson MA, Schwartz GK (2009) Development of cell-cycle inhibitors for cancer therapy. Curr Oncol 16(2):36

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mills CC, Kolb EA, Sampson VB (2017) Recent advances of cell-cycle inhibitor therapies for pediatric cancer. Cancer Res 77(23):6489–6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, G. et al. (2020). Cell Cycle Arrest: An Impending Therapeutic Strategy to Curb Cancer. In: Tuli, H.S. (eds) Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Springer, Singapore. https://doi.org/10.1007/978-981-15-7586-0_3

Download citation

Publish with us

Policies and ethics