Skip to main content

Designing Personalized and Innovative Novel Drug Therapies for Cancer Treatment

  • Chapter
  • First Online:
Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models

Abstract

Cancer being a multifactorial disease, its genesis and progression are enormously complicated. The classical chemotherapeutics along with recent targeted molecular therapy approach have not been effective in complete eradication of all tumor cells and is often been limited by drug resistance and side effects on normal tissues and cells. With the fast evolving field of genomics and molecular medicine translating into precision medicine, the importance of individualized therapeutic protocols has been realized. For transitioning from surgical treatments to radiotherapy to chemo and immunotherapies, in this fast advancing world, it will not be far away when the personalized medicine will be the choice of treatment for one and all. The major challenge in the anticancer drug development is multidrug resistance and relapse. In this chapter, we describe the promising anticancer targets in different phases of drug development in clinical trials along with new drug targets for personalized cancer treatment in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tobore TO (2019) On the need for the development of a cancer early detection, diagnostic, prognosis, and treatment response system. Future Sci OA 6(2):FSO439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30

    Article  PubMed  Google Scholar 

  3. Aggarwal V, Banday AZ, Jindal AK, Das J, Rawat A (2020) Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis 7(1):26–37

    Article  CAS  PubMed  Google Scholar 

  4. Aggarwal V, Das A, Bal A, Srinivasan R, Das R, Prakash G et al (2019) MYD88, CARD11, and CD79B oncogenic mutations are rare events in the indian cohort of de novo nodal diffuse large B-cell lymphoma. Appl Immunohistochem Mol Morphol 27(4):311–318

    Article  CAS  PubMed  Google Scholar 

  5. Aggarwal V, Kashyap D, Sak K, Tuli HS, Jain A, Chaudhary A et al (2019) Molecular mechanisms of action of tocotrienols in cancer: recent trends and advancements. Int J Mol Sci 20(3):656

    Article  CAS  PubMed Central  Google Scholar 

  6. Aggarwal V, Priyanka K, Tuli HS (2020) Emergence of circulating MicroRNAs in breast cancer as diagnostic and therapeutic efficacy biomarkers. Mol Diagn Ther 24(2):153–173

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Chen J (2018) Current status and future directions of cancer immunotherapy. J Cancer 9(10):1773–1781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fodale V, Pierobon M, Liotta L, Petricoin E (2011) Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J 17(2):89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu B, Wang N, Tan HY, Li S, Cheung F, Feng Y (2018) Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: a review on experimental and clinical evidences. Front Pharmacol 9:1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bashraheel SS, Domling A, Goda SK (2020) Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother 125:110009

    Article  CAS  PubMed  Google Scholar 

  11. Aggarwal V, Tuli HS, Kaur J, Aggarwal D, Parashar G, Chaturvedi Parashar N et al (2020) Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicine 8(5):103

    Google Scholar 

  12. Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A et al (2020) Molecular mechanisms of action of epigallocatechin gallate in cancer: recent trends and advancement. Semin Cancer Biol 24:S1044-579X(20)30107-3

    Google Scholar 

  13. Aggarwal V, Tuli HS, Thakral F, Singhal P, Aggarwal D, Srivastava S et al (2020) Molecular mechanisms of action of hesperidin in cancer: recent trends and advancements. Exp Biol Med (Maywood) 245(5):486–497

    Article  CAS  Google Scholar 

  14. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomol Ther 9(11):735

    CAS  Google Scholar 

  15. Lopes A, Vandermeulen G, Preat V (2019) Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 38(1):146

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY (2013) Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 119:421–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hollingsworth RE, Jansen K (2019) Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Exley C (2017) The safety of Cervarix? Lancet Infect Dis 17(1):19–20

    Article  PubMed  Google Scholar 

  19. Zhai L, Tumban E (2016) Gardasil-9: a global survey of projected efficacy. Antivir Res 130:101–109

    Article  CAS  PubMed  Google Scholar 

  20. Splawn LM, Bailey CA, Medina JP, Cho JC (2018) Heplisav-B vaccination for the prevention of hepatitis B virus infection in adults in the United States. Drugs Today (Barc) 54(7):399–405

    Article  CAS  Google Scholar 

  21. Mougel A, Terme M, Tanchot C (2019) Therapeutic cancer vaccine and combinations with Antiangiogenic therapies and immune checkpoint blockade. Front Immunol 10:467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Redelman-Sidi G, Glickman MS, Bochner BH (2014) The mechanism of action of BCG therapy for bladder cancer--a current perspective. Nat Rev Urol 11(3):153–162

    Article  CAS  PubMed  Google Scholar 

  23. Handy CE, Antonarakis ES (2018) Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol 14(10):907–917

    Article  CAS  PubMed  Google Scholar 

  24. Gatti-Mays ME, Redman JM, Collins JM, Bilusic M (2017) Cancer vaccines: enhanced immunogenic modulation through therapeutic combinations. Hum Vaccin Immunother 13(11):2561–2574

    Article  PubMed  PubMed Central  Google Scholar 

  25. di Pietro A, Tosti G, Ferrucci PF, Testori A (2008) Oncophage: step to the future for vaccine therapy in melanoma. Expert Opin Biol Ther 8(12):1973–1984

    Article  PubMed  Google Scholar 

  26. Ryman JT, Meibohm B (2017) Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol 6(9):576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Breedveld FC (2000) Therapeutic monoclonal antibodies. Lancet 355(9205):735–740

    Article  CAS  PubMed  Google Scholar 

  28. Geng X, Kong X, Hu H, Chen J, Yang F, Liang H et al (2015) Research and development of therapeutic mAbs: an analysis based on pipeline projects. Hum Vaccin Immunother 11(12):2769–2776

    Article  PubMed  PubMed Central  Google Scholar 

  29. Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kinder M, Greenplate AR, Strohl WR, Jordan RE, Brezski RJ (2015) An fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. MAbs 7(3):494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coulson A, Levy A, Gossell-Williams M (2014) Monoclonal antibodies in cancer therapy: mechanisms, successes and limitations. West Indian Med J 63(6):650–654

    CAS  PubMed  Google Scholar 

  32. Longenecker G, Kulkarni AB (2009) Generation of gene knockout mice by ES cell microinjection. Curr Protoc Cell Biol. Chapter 19:Unit 19 4 4 1–36

    Google Scholar 

  33. Scott AM, Allison JP, Wolchok JD (2012) Monoclonal antibodies in cancer therapy. Cancer Immun 12:14

    PubMed  PubMed Central  Google Scholar 

  34. Sgro C (1995) Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicology 105(1):23–29

    Article  CAS  PubMed  Google Scholar 

  35. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  36. Liang F, Holt I, Pertea G, Karamycheva S, Salzberg SL, Quackenbush J (2000) Gene index analysis of the human genome estimates approximately 120,000 genes. Nat Genet 25(2):239–240

    Article  CAS  PubMed  Google Scholar 

  37. Matsubara K, Okubo K (1993) Identification of new genes by systematic analysis of cDNAs and database construction. Curr Opin Biotechnol 4(6):672–677

    Article  CAS  PubMed  Google Scholar 

  38. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X et al (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28(5):503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marques AC, Ponting CP (2009) Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biol 10(11):R124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wang WT, Han C, Sun YM, Chen TQ, Chen YQ (2019) Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol 12(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  42. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874

    Article  CAS  PubMed  Google Scholar 

  43. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16(3):167–179

    Article  CAS  PubMed  Google Scholar 

  45. Yoon S, Rossi JJ (2018) Therapeutic potential of small activating RNAs (saRNAs) in human cancers. Curr Pharm Biotechnol 19(8):604–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bainschab A, Quehenberger F, Greinix HT, Krause R, Wolfler A, Sill H et al (2016) Infections in patients with acute myeloid leukemia treated with low-intensity therapeutic regimens: risk factors and efficacy of antibiotic prophylaxis. Leuk Res 42:47–51

    Article  CAS  PubMed  Google Scholar 

  47. Diesch J, Zwick A, Garz AK, Palau A, Buschbeck M, Gotze KS (2016) A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics 8:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Corra F, Agnoletto C, Minotti L, Baldassari F, Volinia S (2018) The network of non-coding RNAs in cancer drug resistance. Front Oncol 8:327

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chi HC, Tsai CY, Tsai MM, Yeh CT, Lin KH (2017) Roles of long noncoding RNAs in recurrence and metastasis of radiotherapy-resistant cancer stem cells. Int J Mol Sci 18(9):1903

    Article  PubMed Central  CAS  Google Scholar 

  50. Mueller AK, Lindner K, Hummel R, Haier J, Watson DI, Hussey DJ (2016) MicroRNAs and their impact on radiotherapy for cancer. Radiat Res 185(6):668–677

    Article  CAS  PubMed  Google Scholar 

  51. El Fatimy R, Subramanian S, Uhlmann EJ, Krichevsky AM (2017) Genome editing reveals glioblastoma addiction to MicroRNA-10b. Mol Ther 25(2):368–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3):1180–1189

    Article  CAS  PubMed  Google Scholar 

  53. Chang RM, Xiao S, Lei X, Yang H, Fang F, Yang LY (2017) miRNA-487a promotes proliferation and metastasis in hepatocellular carcinoma. Clin Cancer Res 23(10):2593–2604

    Article  CAS  PubMed  Google Scholar 

  54. Iversen PL, Arora V, Acker AJ, Mason DH, Devi GR (2003) Efficacy of antisense morpholino oligomer targeted to c-myc in prostate cancer xenograft murine model and a phase I safety study in humans. Clin Cancer Res 9(7):2510–2519

    CAS  PubMed  Google Scholar 

  55. Sekhon HS, London CA, Sekhon M, Iversen PL, Devi GR (2008) C-MYC antisense phosphosphorodiamidate morpholino oligomer inhibits lung metastasis in a murine tumor model. Lung Cancer 60(3):347–354

    Article  PubMed  Google Scholar 

  56. Wang K, Kievit FM, Zhang M (2016) Nanoparticles for cancer gene therapy: recent advances, challenges, and strategies. Pharmacol Res 114:56–66

    Article  CAS  PubMed  Google Scholar 

  57. Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X et al (2017) Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 115:115–154

    Article  CAS  PubMed  Google Scholar 

  58. El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94(1):1–14

    Article  CAS  PubMed  Google Scholar 

  59. Breyer B, Jiang W, Cheng H, Zhou L, Paul R, Feng T et al (2001) Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther 1(2):149–162

    Article  CAS  PubMed  Google Scholar 

  60. Bertram JS (2000) The molecular biology of cancer. Mol Asp Med 21(6):167–223

    Article  CAS  Google Scholar 

  61. Kirn D, Niculescu-Duvaz I, Hallden G, Springer CJ (2002) The emerging fields of suicide gene therapy and virotherapy. Trends Mol Med 8(4 Suppl):S68–S73

    Article  CAS  PubMed  Google Scholar 

  62. Mullen CA (1994) Metabolic suicide genes in gene therapy. Pharmacol Ther 63(2):199–207

    Article  CAS  PubMed  Google Scholar 

  63. Barajas M, Mazzolini G, Genove G, Bilbao R, Narvaiza I, Schmitz V et al (2001) Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology 33(1):52–61

    Article  CAS  PubMed  Google Scholar 

  64. Shi F, Rakhmilevich AL, Heise CP, Oshikawa K, Sondel PM, Yang NS et al (2002) Intratumoral injection of interleukin-12 plasmid DNA, either naked or in complex with cationic lipid, results in similar tumor regression in a murine model. Mol Cancer Ther 1(11):949–957

    CAS  PubMed  Google Scholar 

  65. Hanke P, Serwe M, Dombrowski F, Sauerbruch T, Caselmann WH (2002) DNA vaccination with AFP-encoding plasmid DNA prevents growth of subcutaneous AFP-expressing tumors and does not interfere with liver regeneration in mice. Cancer Gene Ther 9(4):346–355

    Article  CAS  PubMed  Google Scholar 

  66. Conry RM, White SA, Fultz PN, Khazaeli M, Strong TV, Allen KO et al (1998) Polynucleotide immunization of nonhuman primates against carcinoembryonic antigen. Clin Cancer Res 4(11):2903–2912

    CAS  PubMed  Google Scholar 

  67. Walther W, Stein U, Fichtner I, Voss C, Schmidt T, Schleef M et al (2002) Intratumoral low-volume jet-injection for efficient nonviral gene transfer. Mol Biotechnol 21(2):105–115

    Article  CAS  PubMed  Google Scholar 

  68. Cusack JC Jr, Tanabe KK (2002) Introduction to cancer gene therapy. Surg Oncol Clin N Am 11(3):497–519

    Article  PubMed  Google Scholar 

  69. Banas K, Rivera-Torres N, Bialk P, Yoo BC, Kmiec EB (2020) Kinetics of nuclear uptake and site-specific DNA cleavage during CRISPR-directed gene editing in solid tumor cells. Mol Cancer Res 18(6):891–902

    Google Scholar 

  70. Lee H, Yoon DE, Kim K (2020) Genome editing methods in animal models. Anim Cells Syst (Seoul) 24(1):8–16

    Article  CAS  Google Scholar 

  71. Canalis E, Yu J, Schilling L, Yee SP, Zanotti S (2018) The lateral meningocele syndrome mutation causes marked osteopenia in mice. J Biol Chem 293(36):14165–14177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Duan X, Liu J, Zheng X, Wang Z, Zhang Y, Hao Y et al (2016) Deficiency of ATP6V1H causes bone loss by inhibiting bone resorption and bone formation through the TGF-beta1 pathway. Theranostics 6(12):2183–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yao G, Feng H, Cai Y, Qi W, Kong K (2007) Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts. Biochem Biophys Res Commun 357(4):821–827

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Y, Huang H, Zhao G, Yokoyama T, Vega H, Huang Y et al (2017) ATP6V1H deficiency impairs bone development through activation of MMP9 and MMP13. PLoS Genet 13(2):e1006481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T et al (2002) Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 23(5):769–776

    Article  CAS  PubMed  Google Scholar 

  77. Okusha Y, Eguchi T, Tran MT, Sogawa C, Yoshida K, Itagaki M et al (2020) Extracellular vesicles enriched with moonlighting metalloproteinase are highly transmissive, pro-tumorigenic, and trans-activates cellular communication network factor (CCN2/CTGF): CRISPR against cancer. Cancers (Basel) 12(4):881

    Article  Google Scholar 

  78. Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y et al (2008) Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29(6):1235–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Morris SA, Farrell D, Grodzinski P (2014) Nanotechnologies in cancer treatment and diagnosis. J Natl Compr Cancer Netw 12(12):1727–1733

    Article  CAS  Google Scholar 

  80. Crawford J, Dale DC, Lyman GH (2004) Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer 100(2):228–237

    Article  PubMed  Google Scholar 

  81. Gale RP (1985) Antineoplastic chemotherapy myelosuppression: mechanisms and new approaches. Exp Hematol 13(Suppl 16):3–7

    CAS  PubMed  Google Scholar 

  82. Gharib MI, Burnett AK (2002) Chemotherapy-induced cardiotoxicity: current practice and prospects of prophylaxis. Eur J Heart Fail 4(3):235–242

    Article  CAS  PubMed  Google Scholar 

  83. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  84. Baguley BC (2010) Multiple drug resistance mechanisms in cancer. Mol Biotechnol 46(3):308–316

    Article  CAS  PubMed  Google Scholar 

  85. Perez-Herrero E, Fernandez-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Article  CAS  PubMed  Google Scholar 

  86. Gmeiner WH, Ghosh S (2015) Nanotechnology for cancer treatment. Nanotechnol Rev 3(2):111–122

    PubMed  Google Scholar 

  87. Barenholz Y (2012) Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  88. Clark AJ, Wiley DT, Zuckerman JE, Webster P, Chao J, Lin J et al (2016) CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc Natl Acad Sci U S A 113(14):3850–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cui J, Richardson JJ, Bjornmalm M, Faria M, Caruso F (2016) Nanoengineered templated polymer particles: navigating the biological realm. Acc Chem Res 49(6):1139–1148

    Article  CAS  PubMed  Google Scholar 

  90. Fang RH, Jiang Y, Fang JC, Zhang L (2017) Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 128:69–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Richardson JJ, Bjornmalm M, Caruso F (2015) Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233):aaa2491

    Article  PubMed  CAS  Google Scholar 

  92. Yang X, Yang M, Pang B, Vara M, Xia Y (2015) Gold nanomaterials at work in biomedicine. Chem Rev 115(19):10410–10488

    Article  CAS  PubMed  Google Scholar 

  93. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20–37

    Article  CAS  PubMed  Google Scholar 

  94. Balasubramanian V, Liu Z, Hirvonen J, Santos HA (2018) Bridging the knowledge of different worlds to understand the big picture of cancer nanomedicines. Adv Healthc Mater 7(1). https://doi.org/10.1002/adhm.201700432

  95. Stylianopoulos T, Jain RK (2015) Design considerations for nanotherapeutics in oncology. Nanomedicine 11(8):1893–1907

    Article  CAS  PubMed  Google Scholar 

  96. Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A et al (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 16(7):2445–2451

    Article  CAS  PubMed  Google Scholar 

  97. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  CAS  PubMed  Google Scholar 

  98. Takeda M, Tada H, Higuchi H, Kobayashi Y, Kobayashi M, Sakurai Y et al (2008) In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine. Breast Cancer 15(2):145–152

    Article  PubMed  Google Scholar 

  99. Chaturvedi VK, Singh A, Singh VK, Singh MP (2019) Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab 20(6):416–429

    Article  CAS  PubMed  Google Scholar 

  100. Prabhu P, Patravale V (2012) The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotechnol 8(6):859–882

    Article  CAS  PubMed  Google Scholar 

  101. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  CAS  PubMed  Google Scholar 

  102. Singhal S, Nie S, Wang MD (2010) Nanotechnology applications in surgical oncology. Annu Rev Med 61:359–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bae KH, Chung HJ, Park TG (2011) Nanomaterials for cancer therapy and imaging. Mol Cells 31(4):295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Melancon MP, Stafford RJ, Li C (2012) Challenges to effective cancer nanotheranostics. J Control Release 164(2):177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, V. et al. (2020). Designing Personalized and Innovative Novel Drug Therapies for Cancer Treatment. In: Tuli, H.S. (eds) Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Springer, Singapore. https://doi.org/10.1007/978-981-15-7586-0_11

Download citation

Publish with us

Policies and ethics