Skip to main content

A Maiden Application of Competitive Swarm Optimizer for Solution of Economic Load Dispatch with Parameter Estimation

  • Chapter
  • First Online:
Metaheuristic and Evolutionary Computation: Algorithms and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 916))

  • 934 Accesses

Abstract

This work, presents a novel application of newly developed Competitive Swarm Optimizer (CSO) in solving a non-linear, non-convex and constrained Economic Load Dispatch (ELD) problem of power systems. A comparative analysis is performed between Particle Swarm Optimization (PSO) and CSO. CSO is basically inspired by the behavior of well-known PSO algorithm. Similar to PSO, CSO is also swarm based optimization technique and has both cognitive as well as social component. The difference lies in the fact that CSO neither uses local best nor global best in updating the position of their particles, which makes the algorithm memory free. A pair wise competition is performed and only loser particles are updated after getting experience from the winner one. The performance of algorithm is tested on 4 benchmark systems with 5 case studies. Case studies include both small as well as bigger system with various degree of constraints such as; Power balance, Prohibited Operating Zone (POZ), ramp limits, valve point loading etc. Moreover, general and standard statistical tests (t-test) are also performed to investigate the consistency and robust of the proposed algorithm. The performance of CSO is significantly dependent on its social factor (ϕ) and population size. In view of this, in the present work the performance of CSO with the variation in population size and (ϕ) are also studied. Parametric study is also performed for all cases to judge the sensitivity of the algorithm. The study reveals that the proper tuning of social factor (ϕ) and population size significantly reduce the search space which helps the algorithm to accelerate its convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Wood, B.F. Wollenberg, in Power Generation Operation and Control, 2nd edn. (Wiley, Hoboken, 2013)

    Google Scholar 

  2. N. Sinha, R. Chakrabati, P.K. Chattopadhyay, Evolutionary programming techniques for economic load dispatch. IEEE Trans. Evol. Comput. 7(1), 83–94 (2003). https://doi.org/10.1109/TEVC.2002.806788

    Article  Google Scholar 

  3. A. Pereira-Neto, C. Unsihuay, O.R. Saavedra, Efficient evolutionary strategy optimization procedure to solve the nonconvex economic dispatch problem with generator constraints. IEE Proc. Gener. Transm. Distrib. 152(5), 653–660 (2005). https://doi.org/10.1049/ip-gtd:20045287

    Article  Google Scholar 

  4. D. Liu, Y. Cai, Taguchi method for solving the economic dispatch problem with non smooth cost functions. IET Gener. Transm. Distrib. 1(5), 793–803 (2007). https://doi.org/10.1109/TPWRS.2005.857939

    Article  Google Scholar 

  5. C.L. Chiang, Genetic-based algorithm for power economic load dispatch. IEE Proc. Gener. Transm. Distrib. 1(2), 261–269 (2007). https://doi.org/10.1049/iet-gtd:20060130

    Article  Google Scholar 

  6. J.S. Al-Sumait, A.K. Al-Othmam, J.K. Sykulski, Application of pattern search method to power system valve-point economic load dispatch. Electr. Power Energy Syst. 29(10), 720–730 (2007). https://doi.org/10.1016/j.ijepes.2007.06.016

    Article  Google Scholar 

  7. X.-S. Yang, S.S.S. Hosseini, A.H. Gandomi, Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comput. 12, 1180–1186 (2012). https://doi.org/10.1016/j.asoc.2011.09.017

  8. K.K. Vshwakarma, H.M. Dubey, Simulated annealing based optimization for solving large scale economic load dispatch problems. Int. J. Eng. Res. Technol. (IJERT) 1(3), 1–8 (2012). https://doi.org/10.4314/ijest.v4i4.6

    Article  Google Scholar 

  9. S. Ozyon, H. Temurtas, B. Durmus, G. Kuvat, Charged system algorithm for emission constrained economic power dispatch problem. Energy 46(1), 420–430 (2012). https://doi.org/10.1016/j.energy.2012.08.008

    Article  Google Scholar 

  10. S. Özyön, C. Yaşar, H. Temurtas, Differential evolution algorithm approach to nonconvex economic power dispatch problems with valve point effect, in 6th International Advanced Technologies Symposium IATS’11 (2011), pp. 181–186

    Google Scholar 

  11. S. Özyön, C. Yasar, H. Temurtas, Particle swarm optimization algorithm for the solution of nonconvex economic dispatch problem with valve point effect, in 7th International Conference on Electrical and Electronics Engineering, ELECO’11, vol. I (2011), pp. 101–105

    Google Scholar 

  12. S. Özyön, C. Yasar, G. Özcan, H. Temurtas, An artificial bee colony algorithm (ABC) approach to nonconvex economic power dispatch problems with valve point effect, in National Conference on Electrical, Electronics and Computer (2011), pp. 294–299

    Google Scholar 

  13. D. Aydin, S. Ozyon, Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee colony with local search. Appl. Soft Comput. 13, 2456–2466 (2013). https://doi.org/10.9790/1676-11060392101

  14. S. Pothiya, I. Ngamroo, W. Kongprawechnon, Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints. Energy Convers. Manag. 49, 506–516 (2008). https://doi.org/10.1016/j.enconman.2007.08.012

  15. A. Bhattacharya, P.K. Chattopadhyay, Biography-based optimization for different economic load dispatch problems. IEEE Trans. Power Syst. 25(2) (2010). https://doi.org/10.1109/TPWRS.2009.2034525

  16. B. Jeddi, V. Vahidinasab, A modified harmony search method for environmental/economic load dispatch of real-world power systems. Energy Convers. Manag. 78, 661–675 (2014). https://doi.org/10.1016/j.enconman.2013.11.027

  17. V. Hosseinnezhad, E. Babaei, Economic load dispatch using h-PSO. Electr. Power Energy Syst. 49, 160–169 (2013). https://doi.org/10.1016/j.ijepes.2013.01.002

    Article  Google Scholar 

  18. M. Moradi-Dalvand, B. Mohammadi-Ivatloo, A. Najafi, A. Rabiee, Continuous quick group search optimizer for solving non-convex economic dispatch problems. Electr. Power Syst. Res. 93, 93–105 (2015). https://doi.org/10.1016/j.epsr.2012.07.009

  19. B. Shaw, V. Mukerjee, S.P. Ghoshal, Solution of economic dispatch problems by seeker optimization algorithm. Expert Syst. Appl. 39, 508–519 (2012). https://doi.org/10.1016/j.eswa.2011.07.041

  20. S. Duman, N. Yorukeren, I.H. Altas, A novel modified hybrid PSOGSA based on fuzzy logic for non-convex economic dispatch problem with valve-point effect. Elect. Power Energy Syst. 64, 121–135 (2015). https://doi.org/10.1016/j.ijepes.2014.07.031

    Article  Google Scholar 

  21. C. Yasar, S. Özyön, A new hybrid approach for nonconvex economic dispatch problem with valve-point effect. Energy 36(10), 5838–5845 (2011). https://doi.org/10.1016/j.energy.2011.08.041

    Article  Google Scholar 

  22. T.N. Malik, A. Asar, M.F. Wyne, S. Akhtar, A new hybrid approach for the solution of nonconvex economic dispatch problem with valve-point effects. Electr. Power Syst. Res. 80(9), 1128–1136 (2010). https://doi.org/10.1016/j.epsr.2010.03.004

    Article  Google Scholar 

  23. V. Ravikumar Pandi, B.K. Panigrahi, R.C. Bansal, S. Das, A. Mohapatra, Economic load dispatch using hybrid swarm intelligence based harmony search algorithm. Electr Power Compon. Syst. 39(8), 751–767. https://doi.org/10.1080/15325008.2010.541411

  24. C.-T. Su, C.-T. Lin, New approach with a hopfield modeling framework to economic dispatch. IEEE Trans. Power Syst. 15(2) (2000). https://doi.org/10.1109/59.867138

  25. S.H. Ling, H.H.C. Iu, K.Y. Chan, H.K. Lam, B.C.W. Yeung, F.H. Leung, Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Trans. Cybern. 38(3), 743–763. https://doi.org/10.1109/TSMCB.2008.921005

  26. T.A.A. Victoire, A.E. Jeyakumar, Hybrid PSO-SQP for economic dispatch with valve-point effect. Electr. Power Syst. Res. 71(1), 51–59 (2004). https://doi.org/10.1016/j.epsr.2003.12.017

    Article  Google Scholar 

  27. H. Ling, F.H.F. Leung, An improved genetic algorithm with average-bound crossover and wavelet mutation operation. Soft. Comput. 11(1), 7–31 (2007). https://doi.org/10.1007/s00500-006-0049-7

    Article  MATH  Google Scholar 

  28. A.I. Selvakumar, K. Thanushkodi, A new particle swarm optimization solution to nonconvex economic dispatch problems. IEEE Trans. Power Syst. 22(1), 42–51 (2007). https://doi.org/10.1007/s00500-006-0049-7

    Article  Google Scholar 

  29. S.-K. Wang, J.-P. Chiou, C.-W. Liu, Nonsmooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm. IET Gener. Trans. Distrib. 1(5), 793–803 (2007). https://doi.org/10.1049/iet-gtd:20070183

    Article  Google Scholar 

  30. L.D.S. Coelho, V.C. Mariani, Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Trans. Power Syst. 2(2), 989–996 (2006). https://doi.org/10.1109/TPWRS.2006.873410

    Article  Google Scholar 

  31. A.I. Selvakumar, K. Thanushkodi, Anti-predatory particle swarm optimization: solution to nonconvex economic dispatch problems. Electr. Power Syst. Res. 78, 2–10 (2008). https://doi.org/10.1016/j.epsr.2006.12.001

    Article  Google Scholar 

  32. K.T. Chaturvedi, M. Pandit, L. Srivastava, Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch. IEEE Trans. Power Syst. 23(3), 1079–1087 (2008). https://doi.org/10.1109/TPWRS.2008.926455

    Article  Google Scholar 

  33. B.K. Panigrahi, V.R. Pandi, Bacterial foraging optimization: Nelder-Mead hybrid algorithm for economic load dispatch. IET Gener. Trans. Distrib. 2(4), 556–565 (2008). https://doi.org/10.1049/iet-gtd:20070422

    Article  Google Scholar 

  34. J.S. Alsumait, J.K. Sykulski, A.K. Al-Othman, A hybrid GA–PS–SQP method to solve power system valve-point economic dispatch problems. Appl. Energy 87, 1773–1781 (2010). https://doi.org/10.1016/j.apenergy.2009.10.007

    Article  Google Scholar 

  35. K. Barisal, R.C. Prusty, Large scale economic dispatch of power systems using oppositional invasive weed optimization. Appl. Soft Comput. 29, 122–137 (2015). https://doi.org/10.1016/j.asoc.2014.12.014

    Article  Google Scholar 

  36. K. Bhattacharjee, A. Bhattacharya, S.H. Dey, Oppositional real coded chemical reaction optimization for different economic dispatch problems. Int. J. Electr. Power Energy Syst. 55, 378–391 (2014). https://doi.org/10.1016/j.ijepes.2013.09.033

  37. A. Bhattacharya, P.K. Chattopadhyay, Hybrid differential evolution with biogeography based optimization for solution of economic load dispatch. IEEE Trans. Power Syst. 25(4) (2010). https://doi.org/10.1109/TPWRS.2010.2043270

  38. Y. Zhang, D. Gong, Z. Ding, A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf. Sci. 192, 213–227 (2012). https://doi.org/10.1016/j.ins.2011.06.004

    Article  Google Scholar 

  39. D. Gong, Y. Zhang, C. Qi, Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm. Int. J. Electr. Power Energy Syst. 32(6), 607–614 (2010). https://doi.org/10.1016/j.ijepes.2009.11.017

    Article  Google Scholar 

  40. V. Vahidinasab, S. Jadid, Joint economic and emission dispatch in energy market: a multiobjective programming approach. Energy 35, 1497–1504 (2010). https://doi.org/10.1016/j.energy.2009.12.007

    Article  Google Scholar 

  41. B.K. Panigrahi, P.V. Ravikumar, D. Sanjoy, D. Swagatam, Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem. Energy 35(12), 4761–4770 (2010). https://doi.org/10.1016/j.energy.2010.09.014

    Article  Google Scholar 

  42. J. Cai, X. Ma, Q. Li, L. Li, H. Peng, A multi-objective chaotic ant swarm optimization for environmental/economic dispatch. Int. J. Electr. Power Energy Syst. 32(5), 337–344 (2010). https://doi.org/10.1016/j.ijepes.2010.01.006

    Article  Google Scholar 

  43. M.A. Abido, Multiobjective particle swarm optimization for environmental economic dispatch problem. Elec. Power Syst. Res. 79(7), 1105–1113 (2009). https://doi.org/10.1016/j.epsr.2009.02.005

    Article  Google Scholar 

  44. J. Hazra, A.K. Sinha, A multi-objective optimal power flow using particle swarm optimization. Eur. Trans. Electr. Power 21(1), 1028–1045 (2011). https://doi.org/10.1002/etep.494

    Article  Google Scholar 

  45. J. Cai, X. Ma, Q. Li, L. Li, H. Peng, A multi-objective chaotic particle swarm optimization for environmental/economic dispatch. Energy Convers. Manag. 50(5), 1318–1325 (2009). https://doi.org/10.1016/j.enconman.2009.01.013

    Article  Google Scholar 

  46. L.H. Wu, Y.N. Wang, X.F. Yuan, S.W. Zhou, Environmental/economic power dispatch problem using multi-objective differential evolution algorithm. Electr. Power Syst. Res. 80(9), 1171–1181 (2010). https://doi.org/10.1016/j.epsr.2010.03.010

  47. M.A. Abido, Multiobjective evolutionary algorithm for electric power dispatch problem. IEEE Trans. Evol. Comput. 10(3), 315–329 (2006). https://doi.org/10.1109/TEVC.2005.857073

    Article  Google Scholar 

  48. M.A. Abido, A novel multiobjective evolutionary algorithm for environmental economic power dispatch. Electr. Power Syst. Res. 65(1), 71–81 (2003). https://doi.org/10.1016/S0378-7796(02)00221-3

    Article  Google Scholar 

  49. M.A. Abido, A niched pareto genetic algorithm for multiobjective environmental economic power dispatch. Int. J. Electr. Power Energy Syst. 25(2), 97–105 (2003). https://doi.org/10.1016/S0142-0615(02)00027-3

    Article  Google Scholar 

  50. R.T.F.A. King, H.C.S. Rughooputh, K. Deb, Evolutionary multi-objective environmental/economic dispatch: stochactic vs. deterministic approaches, in Lecture Notes in Computer Science, Evolutionary Multi-Criterion Optimization, vol. 34, no. 10 (2005), pp. 677–691. https://doi.org/10.1007/978-3-540-31880-4_47

  51. K.O. Alawode, A.M. Jubril, O.A. Komolafe, Multiobjective optimal power flow using hybrid evolutionary algorithm. Int. J. Electr. Electron. Eng. 4(7), 506–511 (2010)

    Google Scholar 

  52. S. Dhanalakshmi, S. Kannan, K. Mahadevan, S. Baskar, Application of modified NSGA-II algorithm to combined economic and emission dispatch problem. Int. J. Electr. Power Energy Syst. 33(4), 992–1002 (2011). https://doi.org/10.1016/j.ijepes.2011.01.014

    Article  Google Scholar 

  53. M.S. Osman, M.A. Abo-Sinna, A.A. Mousa, An ε-dominance based multiobjective genetic algorithm for economic emission load dispatch optimization problem. Electr. Power Syst. Res. 79(11), 1561–1567 (2009). https://doi.org/10.1016/j.epsr.2009.06.003

    Article  Google Scholar 

  54. M.A. Abido, Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans. Power Syst. 18(4), 1529–1537 (2003). https://doi.org/10.1109/TPWRS.2003.818693

    Article  Google Scholar 

  55. A.A.A. El Ela, M.A. Abido, S.R. Spea, Differential evolution algorithm for emission constrained economic power dispatch problem. Electr. Power Syst. Res. 80(10), 1286–1292 (2010). https://doi.org/10.1016/j.epsr.2010.04.011

    Article  Google Scholar 

  56. P.K. Hota, A.K. Barisal, R. Chakrabarti, Economic emission load dispatch through fuzzy based bacterial foraging algorithm. Int. J. Electr. Power Energy Syst. 32(7), 794–803 (2010). https://doi.org/10.1016/j.ijepes.2010.01.016

    Article  Google Scholar 

  57. J. Kennedy, R. Eberhart, Particle swarm optimization, in IEEE International Conference on Neural Networks, vol. 4 (1995), pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  58. T. Mahto et al., Fractional order control and simulation of wind-biomass isolated hybrid power system using particle swarm optimization. Book chapter in Applications of Artificial Intelligence Techniques in Engineering, Advances in Intelligent Systems and Computing, vol. 698 (2018), pp. 277–287. https://doi.org/10.1007/978-981-13-1819-1_28

  59. S. Smriti et al., Special issue on intelligent tools and techniques for signals, machines and automation. J. Intell. Fuzzy Syst. 35(5), 4895–4899 (2018). https://doi.org/10.3233/JIFS-169773

    Article  Google Scholar 

  60. T. Mahto et al., Load frequency control of a solar-diesel based isolated hybrid power system by fractional order control using particle swarm optimization. J. Intell. Fuzzy Syst. 35(5), 5055–5061 (2018). https://doi.org/10.3233/JIFS-169789

    Article  Google Scholar 

  61. H. Malik et al., PSO-NN-based hybrid model for long-term wind speed prediction: a study on 67 cities of India, Book chapter in Applications of Artificial Intelligence Techniques in Engineering, Advances in Intelligent Systems and Computing, vol. 697, pp. 319–327 (2018). https://doi.org/10.1007/978-981-13-1822-1_29

  62. W.-N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H. Zhan, H.S.-H. Chung, Y. Li, Y.-H. Shi, Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 17(2) (2013). https://doi.org/10.1109/TEVC.2011.2173577

  63. Z.-H. Zhan, J. Zhang, Y. Li, Y.-H. Shi, Orthogonal learning particle swarm optimization. IEEE Trans. Evol. Comput. 15(6) (2011). https://doi.org/10.1109/TEVC.2010.2052054

  64. T. Mabu Subhani, C. Satish Babu, Particle swarm optimization with time varying acceleration coefficients for economic dispatch considering valve point loading effects, in IEEE-ICCCNT (2012), pp. 1–8. https://doi.org/10.1109/ICCCNT.2012.6396022

  65. Y. Xu, Q. Wang, J. Hu, An improved discrete particle swarm optimization based on cooperative swarms, in IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 79–82 (2008). https://doi.org/10.1109/WIIAT.2008.103

  66. R. Cheng, Y. Jin, A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 45(2) (2015). https://doi.org/10.1109/TCYB.2014.2322602

  67. G. Wu, W. Pedrycz, P.N. Suganthan, R. Mallipeddi, A variable reduction strategy for evolutionary algorithms handling equality constraints. Appl. Soft Comput. 37, pp 774–786. https://doi.org/10.1016/j.asoc.2015.09.007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Rajan .

Editor information

Editors and Affiliations

Ethics declarations

Compliance with Ethical Standards

Conflict of Interest: Abhishek Rajan declares that he has no conflict of interest. Abhay Sahu declares that he has no conflict of interest. Debashish Deka declares that he has no conflict of interest. T. Malakar declares that he has no conflict of interest.

Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Appendix

Appendix

See Table 16.

Table 16 General information’s and important data source

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajan, A., Sahu, A., Deka, D., Malakar, T. (2021). A Maiden Application of Competitive Swarm Optimizer for Solution of Economic Load Dispatch with Parameter Estimation. In: Malik, H., Iqbal, A., Joshi, P., Agrawal, S., Bakhsh, F.I. (eds) Metaheuristic and Evolutionary Computation: Algorithms and Applications. Studies in Computational Intelligence, vol 916. Springer, Singapore. https://doi.org/10.1007/978-981-15-7571-6_14

Download citation

Publish with us

Policies and ethics