Skip to main content

Utilization of Plastic Wastes and Its Technologies: An Overview

  • Living reference work entry
  • First Online:
Handbook of Solid Waste Management

Abstract

Plastic, a highly useful and convenient material, ever since its inception over 110 years ago, has become one of the most useful and versatile material of interest in material science with a wide range of applications. Its uses can be seen from agriculture, medical industry, furniture industry, coating, and wiring to packaging films, IV bags, and containers and are more likely to increase with the ongoing worldwide developments in the plastic industry. It is of no denial that both industry and society are heavily reliant on its usage. The fact that it is heavily used is because of its versatile properties ranging from high resistance to corrosion, lightweight, high strength, transparency, low toxicity to durability, and low manufacturing cost. However, these particular properties that make plastic useful have also made it into one of the world’s greatest environmental problems. Plastics, due to its durability, stay in our environment for hundreds of years in the form of large waste or even in smaller pieces; invisible to our naked eyes, it chokes marine life and propagates up the food chain. Managing plastic waste is one of the most critical sectors of today’s world because of continuous increase in plastic use, its nonbiodegradability, and direct harmful effect to society. In addition to technical and environmental complications, there are administrative, economic, and societal tribulations that must be addressed. This chapter focuses on the overview of plastic wastes, current scenario, and some of the conventional and modern approaches to plastic waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • S.M. Al-Salem, P. Lettieri, J. Baeyens, Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 29(10), 2625–2643 (2009)

    Article  CAS  Google Scholar 

  • A. Angyal, N. Miskolczi, L. Bartha, Petrochemical feedstock by thermal cracking of plastic waste. Journal of Analytical and Applied Pyrolysis 79(1), 409–414 (2007)

    Google Scholar 

  • J.K. Appiah, V. NanaBerko-Boateng, T. AmaTagbor, Use of waste plastic materials for road construction in Ghana. Case Stud. Constr. Mater. 6, 1–7 (2017)

    Google Scholar 

  • S.A. Ashter, Commercial applications of bioplastics, in Introduction to Bioplastics Engineering, (Elsevier Science, 2016, USA), pp. 227–249

    Google Scholar 

  • T. Banerjee, R.K. Srivastava, Y.T. Hung, Plastics waste management in India: An integrated solid waste management approach, in Handbook of Environment and Waste Management, (2009), pp. 1029–1060. https://doi.org/10.1142/9789814449175_0017

    Chapter  Google Scholar 

  • Y. Becker, A. Muñoz, R. Bolívar, Asfaltos para pavimentación: Asfaltos modificados con polímeros, Tech. Report INT-02931,94 (Intevep, S.A., Los Teques, 1994)

    Google Scholar 

  • Y. Becker, M.P. Méndez, Y. Rodríguez, Vis. Technol. 9(1), 39–50 (2001)

    CAS  Google Scholar 

  • H. Binici, O. Aksogan, Eco-friendly insulation material production with waste olive seeds, ground PVC and wood chips. J. Build. Eng. 5, 260–266 (2016)

    Article  Google Scholar 

  • A. Bogaerto, E. Neyts, R. Gijbels, J. Van der Mullen, Gas discharge plasma and their application. Spectrochim. Acta B At. Spectrosc. 57, 609–659 (2002)

    Article  Google Scholar 

  • Central Pollution Control Board, Study on Plastic Waste Disposal through “Plasma Pyrolysis Technology” (Ministry of Environment & Forests & Climate Change, New Delhi, 2016)

    Google Scholar 

  • M. Dalhat, H. Al-Abdul Wahhab, Properties of recycled polystyrene and polypropylene bounded concretes compared to conventional concretes. J. Mater. Civ. Eng. 29(9), 1–9 (2017)

    Google Scholar 

  • W.H. Daly, Z. Qiu, J. Youngblood, I. Negulescu, Enhancing reinforcement effects of polymers in Asphalt: An applied approach to solid waste disposal. Progress in Pacific Polymer Science 3: Proceedings of the Third Pacific Polymer Conference, vol 381, Gold Coast, 1994

    Google Scholar 

  • M.V. Deepthi, M. Ameen Khan, R.R.N. Sailaja, P. Roy, TERI analysis on challenges and opportunities – Plastic waste management in India,(TERI, New Delhi) pp. 1–18 (2018)

    Google Scholar 

  • F. Defoor, Physico-chemical aspects of Asphalt modification for road construction. American Chemical Society Division of Rubber Chemistry, Paper No. 15 (1990)

    Google Scholar 

  • B.K. Deka, M. Mandal, T.K. Maji, Effect of nanoparticles on flammability, UV resistance, biodegradability, and chemical resistance of wood polymer nanocomposite. Ind. Eng. Chem. Res. 51, 11881–11891 (2012)

    Article  CAS  Google Scholar 

  • D. Elvers, C.H. Song, A. Steinbüchel, J. Leker, Technology trends in biodegradable polymers: Evidence from patent analysis. Polym. Rev. 56, 584–606 (2016)

    Article  CAS  Google Scholar 

  • European Commission, A European Strategy for Plastics in a Circular Economy (2018), http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1516265440535&uri=COM:2018:28:FIN

  • H. Fesscha, F. Abebe, Degradation of plastic materials using microorganisms: A review. Public Health Open J 4(2), 57–63 (2019)

    Article  Google Scholar 

  • Gershman, Brickner & Bratton, Inc., Non-recycled plastics from municipal solid waste in the United States. GBB Solid Waste Management Consultants (2013)

    Google Scholar 

  • Giavarini, Polymer-Modified Bitumen, In: Asphaltenes and Asphalts. Developments in Petroleum Science Series. 40A, Ch.16, (Elsevier Science, 1994, USA) 381

    Google Scholar 

  • C. Giavarini, M.L. Santarelli, V. Braga, Progettazione di un polimero a base polipropilenica adatto per la modifica dei bitumi. Chim. Indus. 75(4), 270 (1993)

    Google Scholar 

  • F. Gironi, V. Piemonte, Bioplastics and petroleum-based plastics: Strength and weaknesses. Energy Sources, Part A 33(21), 1949–1959 (2011)

    Article  CAS  Google Scholar 

  • Z. He, G. Li, J. Chen, Y. Huang, T. An, Z.C. Zhigui, Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environ. Int. 77, 85–94 (2015)

    Article  CAS  Google Scholar 

  • A. Heshmat, L. Lewandowski, D. Little, Polymer Modifiers for Improved Performance of Asphalt Mixtures (Seminar organized by the Journal of Elastomers and Plastics and sponsored by the Programme Division Technomic Publishing AG., Basel, 1995)

    Google Scholar 

  • J. Ru, Y. Huo, Y. Yang, Microbial degradation and valorization of plastic wastes. Front. Microbiol. 11, 2020. https://doi.org/10.3389/fmicb.2020.00442

  • U. Isacsson, X. Lu, Testing and appraisal of polymer modified road Bitumens – State of the art. Mater. Struct. 28, 139 (1995a)

    Article  CAS  Google Scholar 

  • U. Isacsson, X. Lu, Testing and appraisal of polymer modified road bitumen. Mater. Struct. 28(3), 139–159 (1995b)

    Article  CAS  Google Scholar 

  • Z.Z. Ismail, E.A. Hashmi, Use of waste plastic in concrete mixture as aggregate replacement. Waste Manag. 28, 2041–2047 (2008)

    Article  CAS  Google Scholar 

  • F. Iucolano et al., Recycled plastic aggregate in mortars composition: Effect on physical and mechanical properties. Mater. Des. 52, 916–922 (2013)

    Article  CAS  Google Scholar 

  • M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Poly-lactic acid: Production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9, 552–571 (2010)

    Article  CAS  Google Scholar 

  • J. Jha et al., Behavior of plastic waste fiber-reinforced industrial wastes in pavement applications. Int. J. Geotech. Eng. 8(3), 277–286 (2014)

    Article  CAS  Google Scholar 

  • Y. Kakuta, K. Hirano, M. Sugano, K. Mashimo, Study on chlorine removal from mixture of waste plastics. Waste Manag. 28, 615–621 (2008)

    Article  CAS  Google Scholar 

  • G.N. King, H.W. King, Polymer modified Asphalts: An overview. Am. Soc. Civil Eng. (USA) 240–254 (1986)

    Google Scholar 

  • L.C.M. Lebreton et al., River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017)

    Article  CAS  Google Scholar 

  • A. Lopez-Urionabarrenechea, I. de Marco, B.M. Caballero, M.F. Laresgoiti, Adrados, Catalytic stepwise pyrolysis of packaging plastic waste (2012)

    Google Scholar 

  • G.E. Luckachan, C.K.S. Pillai, Biodegradable polymers–a review on recent trends and emerging perspectives. J. Polym. Environ. 19, 637–676 (2011)

    Article  CAS  Google Scholar 

  • G.M. Masters, Introduction to Environmental Engineering and Science (Prentice-Hall of India Pvt. Ltd. 38, New Delhi, 2004)

    Google Scholar 

  • A. Matsuda, Plasma and surfaces reactions for obtaining low defects density amorphous silicon at high growth rates. J. Vac. Sci. Technol. A 16, 365–368 (1998)

    Article  CAS  Google Scholar 

  • N. Miskolczi, A. Angyal, L. Bartha, I. Valkai, N. Miskolczi, Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor (2009)

    Google Scholar 

  • P. Morgan, A. Mulder, The Shell Bitumen Industrial Handbook (Shell Bitumen, Surrey, 1995)

    Google Scholar 

  • K. Moustakas, D. Fatta, S. Malamis, K. Haralambous, M. Loizodo, Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J. Hazard. Mat. 123, 120–126 (2005)

    Article  CAS  Google Scholar 

  • S. Muenmee, C.C. Wilai, Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int. Biodeterior. Biodegrad. 102, 172–181 (2015)

    Article  CAS  Google Scholar 

  • S. Muenmee, W. Chiemchaisri, C. Chiemchaisri, Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. International Biodeterioration & Biodegradation. 102, 172–181 (2015)

    Google Scholar 

  • M. Nagalakshmaiah, S. Afrin, et al., Biocomposites: Present trends and challenges for the future, in Green Composites for Automotive Applications, (2019), pp. 197–215

    Chapter  Google Scholar 

  • S.K. Nema, Plasma processing update, Institute for Plasma Research, 50 (2007)

    Google Scholar 

  • S.K. Nema, K.S. Ganeshprasad, Current Science, 69 (2002)

    Google Scholar 

  • S.K. Nema, C. Patil, V. Jain, Plasma Pyrolysis Technology and its Evolution at FCIPT, Institute for Plasma Research, India. https://doi.org/10.13140/RG.2.1.3435.6880 (2016)

  • NPWMTF, National Plastics Waste Management Task Force (NPWMTF) Report (Ministry of Environment and Forest, Government of India, New Delhi, 1997)

    Google Scholar 

  • J. Pastor et al., Glass reinforced concrete panels containing recycled tyres: Evaluation of the acoustic properties of for their use as sound barriers. Constr. Build. Mater. 54, 541–549 (2014)

    Article  Google Scholar 

  • E. Pfender, Thermal plasma processing in the nineties. Pure Appl. Chem. 60, 591–606 (1988)

    Article  CAS  Google Scholar 

  • E. Pfender, Thermal plasma technology: Where do we stand and where are we going? Plasma Chem. Plasma Process. 19, 1–31 (1999)

    Article  CAS  Google Scholar 

  • M. Puncochar, B. Ruj, P.K. Chatterjee, Development of process for disposal of plastic waste using plasma pyrolysis technology and option for energy recovery. Procedia Eng. 42, 461–473 (2012)

    Article  CAS  Google Scholar 

  • V. Rathnam, A. Kichu, N. Dutta, T.K. Maji, N. Devi, Influence of organically modified nanoclay and TiO2 nanopowder on the properties of Azadirachta Indica wood flour reinforced high density polyethylene, low density polyethylene, polypropylene and polyvinyl chloride nanocomposite. J. Thermoplast. Compos. Mater. (2020). https://doi.org/10.1177/0892705720935968

  • N. Saikia, J. de Brito, Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater. 52, 236–244 (2014)

    Article  Google Scholar 

  • A.A. Sayadi et al., Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr. Build. Mater. 112, 716–724 (2016)

    Article  CAS  Google Scholar 

  • J.P. Serfaas, A. Joly, J. Samanos, SBS-modified asphalts for surface dressing: a comparison between hot-applied and emulsified binders. In: Wardlaw KR, Shuler S, editors. Polymer modified asphalt binders. ASTM STP 1108 (Philadelphia, USA, ASTM Ed.) (1992) p. 281–308

    Google Scholar 

  • E. Sevigné-Itoiz, C.M. Gasol, J. Rieradevall, X. Gabarrell, Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain. Waste Manag. 46, 557–567 (2015)

    Article  Google Scholar 

  • SGCCI, The Indian Plastic Industry, PlastIndia Foundation, Southern Gujarat Chamber of Commerce and Industry (SGCCI), India (2000)

    Google Scholar 

  • H. Shah, How Gujarat succeeded in co-processing plastic waste in cement kilns and promoting circular economy. Down to Earth, September, 2018 (2018)

    Google Scholar 

  • M. Shanmugapriya, H. Santhi, Strength and chloride permeable properties of concrete with high density polyethylene wastes. Int. J. Chem. Sci. 15(1) (2017)

    Google Scholar 

  • J. Wang et al., Morphologies and properties of polycarbonate/polyethylene in situ microfibrillar composites prepared through multistage stretching extrusion. J. Appl. Polym. Sci. 131(7) (2014)

    Google Scholar 

  • S.L. Wong, N. Ngadi, T.A.T. Abdullah, I.M. Inuw, Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sust. Energ. Rev. 50, 1167–1180 (2015)

    Article  CAS  Google Scholar 

  • S. Yang et al., Properties of self-compacting lightweight concrete containing recycled plastic particles. Constr. Build. Mater. 84, 444–453 (2015)

    Article  Google Scholar 

  • J. Zielinski, Investigations on thermal properties of asphalt-polymer compositions. Erdöl Kohle 42(11), 456 (1989)

    CAS  Google Scholar 

  • S.E. Zorrob, L.B. Suparama, Laboratory design and investigation of proportion of bituminous composite containing waste recycled plastics aggregate replacement (Plastiphalt). Cem. Concr. Compos. 22(4), 233–242 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kichu, A., Devi, N. (2021). Utilization of Plastic Wastes and Its Technologies: An Overview. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-7525-9_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7525-9_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7525-9

  • Online ISBN: 978-981-15-7525-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics