Skip to main content

Paddy Straw-Based Circular Economy for Sustainable Waste Management

  • Living reference work entry
  • First Online:
Handbook of Solid Waste Management

Abstract

The crop residues and stubbles from agriculture are inevitable products received after harvesting/processing. As the staple food, rice cultivation contributes to ca. 800 million tons of straw at global level. The nutrient-rich biomass demands competent degradation strategies and fruitful use. The cost-effective utilization of paddy straw is found in the production of biochar/hydrochar, producer gas, biogas, power generation, etc. On the contrary, burning rice straw is practiced in many parts of the globe leading to numerous ill effects, viz., release of soot and smoke, greenhouse gas emission, and loss of nutrients. Toward sustainable approach, the paddy straw should be used in all possible ways with the technologies ensuring zero waste and zero harm to the environment. In situ incorporation, composting with help of functional microbes, can be practiced at field level. Further the biomass can be converted to functional carbonized material through either hydrothermal liquefaction (HTL) or hydrothermal carbonization (HTC). The low-tech system yields bio-oil and hydrocarbon, respectively. The optimized application of products again to the crop would significantly enhance C status of the soil, reduce GHG emission, and so on. Being abundant in lignin, they can be used as potential feedstock for renewable energy generation like biomethane and bioethanol. To abate the environmental pollution and intensify the soil fertility status, reuse and recycle are the forefront management strategies. Also, paddy straw sets step as valuable tool in the perspective of energy, environment, and economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • P. Amnuaycheewa, R. Hengaroonprasan, K. Rattanaporn, S. Kirdponpattara, K. Cheenkachorn, M. Sriariyanun, Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Ind. Crop. Prod. 87, 247–254 (2016)

    Article  Google Scholar 

  • M. Arora, A. Kaur, Azolla pinnata, Aspergillus terreus and Eisenia fetida for enhancing agronomic value of paddy straw. Sci. Rep. 9, 1341 (2019)

    Article  Google Scholar 

  • A. Arora, S. Priya, P. Sharma, S. Sharma, L. Nain, Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw. Biocatal. Agric. Biotechnol. 8, 66–72 (2016)

    Article  Google Scholar 

  • J.S. Bak, J.K. Ko, Y.H. Han, B.C. Lee, I.-G. Choi, K.H. Kim, Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. BioresourTechnol 100, 1285–1290 (2009)

    Article  Google Scholar 

  • C. Balingbing, N. Van Hung, A.P. Roxas, D. Aquino, M.G. Barbacias, M. Gummert, An assessment on the technical and economic feasibility of mechanized rice straw collection in the Philippines. Sustainability 12(17), 7150 (2020)

    Article  Google Scholar 

  • A. Barakat, C. Mayer-Laigle, A. Solhy, R.A. Arancon, H. De Vries, R. Luque, Mechanical pretreatments of lignocellulosic biomass: Towards facile and environmentally sound technologies for biofuels production. RSC Adv. 4, 48109–48127 (2014)

    Article  Google Scholar 

  • R. Chandra, H. Takeuchi, T. Hasegawa, Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production. Appl. Energy 94, 129–140 (2012)

    Article  Google Scholar 

  • K.-L. Chang et al., Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass Bioenergy 35, 90–95 (2011)

    Article  Google Scholar 

  • X. Chen, Y. Zhang, Y. Gu, Z. Liu, Z. Shen, H. Chu, X. Zhou, Enhancing methane production from rice straw by extrusion pretreatment. Appl. Energy 122, 34–41 (2014)

    Article  Google Scholar 

  • X. Chen et al., Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw. Chem. Eng. J. 273, 254–260 (2015)

    Article  Google Scholar 

  • R.A. Dar, M. Arora, U.G. Phutela, Optimization of cultural factors of newly isolated microalga Spirulina subsalsa and its co-digestion with paddy straw for enhanced biogas production. Bioresour. Technol. Rep. 5, 185–198 (2019)

    Article  Google Scholar 

  • A. Darmawan, A.C. Fitrianto, M. Aziz, K. Tokimatsu, Enhanced electricity production from rice straw. Energy Procedia 142, 271–277 (2017)

    Article  Google Scholar 

  • L.P. Devendra, A. Pandey, Hydrotropic pretreatment on rice straw for bioethanol production. Renew. Energy 98, 2–8 (2016)

    Article  Google Scholar 

  • R. Divyabharathi, P. Subramanian, Hydrothermal liquefaction of paddy straw for biocrude production. Mater Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.390

  • D. Dong, Q. Feng, K. McGrouther, M. Yang, H. Wang, W. Wu, Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J. Soils Sediments 15, 153–162 (2015)

    Article  Google Scholar 

  • Y. Gu, Y. Zhang, X. Zhou, Effect of Ca(OH)2 pretreatment on extruded rice straw anaerobic digestion. Bioresour. Technol. 196, 116–122 (2015)

    Article  Google Scholar 

  • J. Guggolz, G. Kohler, T. Klopfenstein, Composition and improvement of grass straw for ruminant nutrition. J. Anim. Sci. 33, 151–156 (1971)

    Article  Google Scholar 

  • M. Hans, S. Kumar, A.K. Chandel, I. Polikarpov, A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation process. Biochemist 85, 125–134 (2019)

    Google Scholar 

  • S.H.A. Hassan et al., Electricity generation from rice straw using a microbial fuel cell. Int. J. Hydrog. Energy 39, 9490–9496 (2014)

    Article  Google Scholar 

  • S. Imman, J. Arnthong, V. Burapatana, V. Champreda, N. Laosiripojana, Influence of alkaline catalyst addition on compressed liquid hot water pretreatment of rice straw. Chem. Eng. J. 278, 85–91 (2015)

    Article  Google Scholar 

  • J.-y. Park et al., A novel lime pretreatment for subsequent bioethanol production from rice straw – Calcium capturing by carbonation (CaCCO) process. Bioresour. Technol. 101, 6805–6811 (2010)

    Article  Google Scholar 

  • J. Kainthola, A.S. Kalamdhad, V.V. Goud, Enhanced methane production from anaerobic co-digestion of rice straw and Hydrilla verticillata and its kinetic analysis. Biomass Bioenergy 125, 8–16 (2019)

    Article  Google Scholar 

  • A. Kamara, H.S. Kamara, M.S. Kamara, Effect of rice straw biochar on soil quality and the early growth and biomass yield of two rice varieties. Agric. Sci. 6, 798–806 (2015)

    Google Scholar 

  • H.S. Kambo, A. Dutta, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sust. Energ. Rev. 45, 359–378 (2015)

    Article  Google Scholar 

  • K. Kaur, U.G. Phutela, Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment. Renew. Energy 92, 178–184 (2016)

    Article  Google Scholar 

  • H. Kausar, M. Sariah, H. Mohd Saud, M. Zahangir Alam, M. Razi Ismail, Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. Int. Biodeterior. Biodegradation 64, 594–600 (2010)

    Article  Google Scholar 

  • M. Kim et al., Hydrogen and methane production from untreated rice straw and raw sewage sludge under thermophilic anaerobic conditions. Int. J. Hydrog. Energy 38, 8648–8656 (2013)

    Article  Google Scholar 

  • P. Li et al., Rice straw decomposition affects diversity and dynamics of soil fungal community, but not bacteria. J. Soils Sediments 18, 248–258 (2018)

    Article  Google Scholar 

  • Q. Li, F. Yang, G. Zheng, Z. Guan, Effects of urea ammonia pretreatment on the batch anaerobic fermentation efficiency of corn stovers. Int. J. Agric. Biol. Engg. 12(4), 169–173 (2019)

    Google Scholar 

  • Y. Liu, H. Lu, S. Yang, Y. Wang, Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crop Res. 191, 161–167 (2016)

    Article  Google Scholar 

  • E. Mahmoud, M. Ibrahim, P. Robin, N. Akkal-Corfini, M. El-Saka, Rice straw composting and its effect on soil properties. Compost. Sci. Util. 17, 146–150 (2009)

    Article  Google Scholar 

  • S. Marimuthu, Studies on stubble management in paddy. PhD dissertation, Tamil Nadu Agricultural University, Coimbatore, 1994

    Google Scholar 

  • S. Mirmohamadsadeghi, K. Karimi, A. Zamani, H. Amiri, I.S. Horváth, Enhanced solid-state biogas production from lignocellulosic biomass by organosolv pretreatment. Biomed. Res. Int. 2014, 350414 (2014)

    Article  Google Scholar 

  • S. Munda et al., Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar. Biomass Bioenergy 115, 1–9 (2018)

    Article  Google Scholar 

  • Y. Nakamura, T. Sawada, E. Inoue, Enhanced ethanol production from enzymatically treated steam-exploded rice straw using extractive fermentation. J. Chem. Technol. Biotechnol. 76, 879–884 (2001)

    Article  Google Scholar 

  • S. Negi, H. Dhar, A. Hussain, S. Kumar, Biomethanation potential for co-digestion of municipal solid waste and rice straw: A batch study. Bioresour. Technol. 254, 139–144 (2018)

    Article  Google Scholar 

  • R.A.C. Passetti, L.C.G. Passetti, R.J. Gruninger, G.O. Ribeiro, M.R. Marami Milani, I.N. Prado, T.A. McAllister, Effect of ammonia fibre expansion (AFEX) treatment of rice straw on in situ digestibility, microbial colonization, acetamide levels and growth performance of lambs. Anim. Feed Sci. Technol. 261, 114411 (2020). https://doi.org/10.1016/j.anifeedsci.2020.114411

    Article  Google Scholar 

  • D.C. Pedraza-Zapata, A.M. Sánchez-Garibello, B. Quevedo-Hidalgo, N. Moreno-Sarmiento, I. Gutiérrez-Rojas, Promising cellulolytic fungi isolates for rice straw degradation. J. Microbiol. 55, 711–719 (2017)

    Article  Google Scholar 

  • U.G. Phutela, N. Sahni, S.S. Sooch, Fungal degradation of paddy straw for enhancing biogas production. Indian J. Sci. Technol. 4, 660–665 (2011)

    Article  Google Scholar 

  • E.P.A. Pratiwi, Y. Shinogi, Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy Water Environ. 14, 521–532 (2016)

    Article  Google Scholar 

  • X. Qin et al., Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Sci. Total Environ. 569–570, 1390–1401 (2016)

    Article  Google Scholar 

  • S. Sagia, A. Sharma, S. Singh, S. Chaturvedi, P.K.S. Nain, L. Nain, Single cell oil production by a novel yeast Trichosporon mycotoxinivorans for complete and ecofriendly valorization of paddy straw. Electron. J. Biotechnol. 44, 60–68 (2020)

    Article  Google Scholar 

  • S. Sarangi, T. Lama, Straw composting using earthworm (Eudrilus eugeniae) and fungal inoculant (Trichoderma viridae) and its utilization in rice (Oryza sativa)-groundnut (Arachis hypogaea) cropping system. Indian J. Agric. Sci. 83, 420–425 (2013)

    Google Scholar 

  • M. Saritha, A. Arora, L. Nain, Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresour. Technol. 104, 459–465 (2012)

    Article  Google Scholar 

  • C. Sarnklong, J. Cone, W. Pellikaan, W. Hendriks, Utilization of rice straw and different treatments to improve its feed value for ruminants: A review. Asian Australas. J. Anim. Sci. 23, 680–692 (2010)

    Article  Google Scholar 

  • A. Sato, S. Soeprijanto, A. Widjaja, Influence of alkaline hydrothermal pretreatment of rice straw on biomass composition. Int. Energy J. 19, 2 (2019)

    Google Scholar 

  • T.A. Shah, C.C. Lee, W.J. Orts, R. Tabassum, Biological pretreatment of rice straw by ligninolytic Bacillus sp. strains for enhancing biogas production. Environ. Prog. Sustain. Energy 38, e13036 (2019)

    Article  Google Scholar 

  • R.K. Sharma, D.S. Arora, Solid state degradation of paddy straw by Phlebia floridensis in the presence of different supplements for improving its nutritive status. Int. Biodeterior. Biodegradation 65, 990–996 (2011)

    Article  Google Scholar 

  • A. Sharma, R. Sharma, A. Arora, R. Shah, A. Singh, K. Pranaw, L. Nain, Insights into rapid composting of paddy straw augmented with efficient microorganism consortium. Int. J. Recycl. Org. Waste Agric. 3, 54 (2014)

    Article  Google Scholar 

  • G. Sheikh et al., Effect of feeding urea molasses treated rice straw along with fibrolytic enzymes on the performance of Corriedale Sheep. J. Entomol. Zool. Stud. 5, 2626–2630 (2017)

    Google Scholar 

  • S. Shrivastava, S. Verma, A. Patra, V. Arya, M. Manna, Efficacy of ligno-cellulolytic microbial consortia on biodegradation of paddy residues and its effect on biological properties of soil. J. Pharmacogn. Phytochem. 8, 1612–1616 (2019)

    Google Scholar 

  • G. Singh, A. Tiwari, H. Rathore, S. Prasad, P. Hariprasad, S. Sharma, Valorization of paddy straw using de-oiled cakes for P. ostreatus cultivation and utilization of spent mushroom substrate for biopesticide development. Waste Biomass Valoriz. 1–14 (2020). https://doi.org/10.1007/s12649-020-00957-y

  • I. Syaichurrozi, Biogas production from co-digestion Salvinia molesta and rice straw and kinetics. Renew. Energy 115, 76–86 (2018)

    Article  Google Scholar 

  • M. Taha, E. Shahsavari, K. Al-Hothaly, A. Mouradov, A.T. Smith, A.S. Ball, E.M. Adetutu, Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms. Appl. Biochem. Biotechnol. 175, 3709–3728 (2015)

    Article  Google Scholar 

  • N.X. Trach, M. Mo, C.X. Dan, Effects of treatment of rice straw with lime and/or urea on responses of growing cattle. Livest. Res. Rural. Dev. 13, 47 (2001)

    Google Scholar 

  • J. Wang, M. Zhang, Z. Xiong, P. Liu, G. Pan, Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biol. Fertil. Soils 47, 887–896 (2011)

    Article  Google Scholar 

  • X. Wang, X. Lu, F. Li, G. Yang, Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: Focusing on ammonia inhibition. PLoS One 9, e97265 (2014)

    Article  Google Scholar 

  • N. Wang, Z.-Z. Chang, X.-M. Xue, J.-G. Yu, X.-X. Shi, L.Q. Ma, H.-B. Li, Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Sci. Total Environ. 581, 689–696 (2017)

    Article  Google Scholar 

  • S. Wang, Y. Ruan, W. Zhou, Z. Li, J. Wu, D. Liu, Net energy analysis of small-scale biogas self-supply anaerobic digestion system operated at psychrophilic to thermophilic conditions. J. Clean. Prod. 174, 226–236 (2018)

    Article  Google Scholar 

  • S.G. Wi, I.S. Choi, K.H. Kim, H.M. Kim, H.-J. Bae, Bioethanol production from rice straw by popping pretreatment. Biotechnol. Biofuels 6, 166 (2013)

    Article  Google Scholar 

  • X. Xu et al., Rice straw biochar mitigated more N2O emissions from fertilized paddy soil with higher water content than that derived from ex situ biowaste. Environ. Pollut. 263, 114477 (2020)

    Article  Google Scholar 

  • B.-Y. Yeon, H.-K. Kwak, Y.-S. Song, H.-J. Jun, H.-J. Cho, C.-H. Kim, Changes in rice yield and soil organic matter content under continued application of rice straw compost for 50 years in paddy soil. Korean J. Soil Sci. Fertil. 40, 454–459 (2007)

    Google Scholar 

  • D. Yin, X. Wang, B. Peng, C. Tan, L.Q. Ma, Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere 186, 928–937 (2017)

    Article  Google Scholar 

  • M. Yu, G. Zeng, Y. Chen, H. Yu, D. Huang, L. Tang, Influence of Phanerochaete chrysosporium on microbial communities and lignocellulose degradation during solid-state fermentation of rice straw. Process Biochem. 44, 17–22 (2009)

    Article  Google Scholar 

  • T. Zhang , L. Liu, Z. Song, G. Ren, Y. Feng, H.X. Yang, Biogas production by Co-digestion of goat manure with three crop residues. PLoS One 8, e66845. https://doi.org/10.1371/journal.pone.0066845. (2013)

  • H. Zhang, P. Zhang, J. Ye, Y. Wu, W. Fang, X. Gou, G. Zeng, Improvement of methane production from rice straw with rumen fluid pretreatment: A feasibility study. Int. Biodeterior. Biodegradation 113, 9–16 (2016)

    Article  Google Scholar 

  • G. Zhao, F. Ma, L. Wei, H. Chua, Using rice straw fermentation liquor to produce bioflocculants during an anaerobic dry fermentation process. Bioresour. Technol. 113, 83–88 (2012)

    Article  Google Scholar 

  • J. Zhao, Z. Dong, J. Li, L. Chen, Y. Bai, Y. Jia, T. Shao, Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour. Technol. 266, 158–165 (2018)

    Article  Google Scholar 

  • G. Zhou, S. Gao, Y. Lu, Y. Liao, J. Nie, W. Cao, Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil Tillage Res. 197, 104499 (2020)

    Article  Google Scholar 

  • S. Zhu, Y. Wu, Z. Yu, J. Liao, Y. Zhang, Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem. 40, 3082–3086 (2005a)

    Article  Google Scholar 

  • S. Zhu et al., Simultaneous saccharification and fermentation of microwave/alkali pre-treated rice straw to ethanol. Biosyst. Eng. 92, 229–235 (2005b)

    Article  Google Scholar 

  • S. Zhu, W. Huang, W. Huang, K. Wang, Q. Chen, Y. Wu, Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent. Appl. Energy 154, 190–196 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subburamu Karthikeyan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Geetha Thanuja, K., Marimuthu, S., Ramesh, D., Karthikeyan, S. (2021). Paddy Straw-Based Circular Economy for Sustainable Waste Management. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-7525-9_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7525-9_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7525-9

  • Online ISBN: 978-981-15-7525-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics