Skip to main content

Development of Modern Tools for Environmental Monitoring of Pathogens and Toxicant

  • Chapter
  • First Online:
Environmental Microbiology and Biotechnology

Abstract

Environmental monitoring is required to protect our surrounding from contamination, especially bacteria, virus, and parasitic pathogens & their toxins as well as chemical substances that can be released into a air, soil, and water create serious public health concerns. Presently, traditional methods more popular for the detection of pathogens and its toxins, but they have several limitations due to low concentrations and interference with various enzymatic inhibitors in the environmental samples. This chapter describes the current state of modern tools, the advantages over conventional detection methods, and the challenges due to testing of environmental samples. Future trends in the development of novel detection devices and their importance, use over other environmental monitoring methodologies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abulreesh HH, Paget TA, Goulder R (2006) Campylobacter in waterfowl and aquatic environments: incidence and methods of detection. Environ Sci Technol 40:7122–7131. https://doi.org/10.1021/es060327l

    Article  CAS  Google Scholar 

  • Adleyb C, Arshaka K, Molnarb C et al (2009) Design of specific DNA primers to detect the Bacillus cereus group species. In: IEEE sensors applications symposium new Orleans, LA

    Google Scholar 

  • Adzitey F, Corry JA (2011) Comparison between hippurate hydrolysis and multiplex PCR for differentiating C. coli and C. jejuni. Trop Life Sci Res 22:57–64

    Google Scholar 

  • Adzitey F, Huda N, Ali GRR (2013) Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3 Biotech 3:97–107

    Article  Google Scholar 

  • Ansari AA, Kaushik A, Solanki PR, Malhotra BD (2010) Nano structured zinc oxide platform for mycotoxin detection. Bioelectrochemistry 77:75–81

    Article  CAS  Google Scholar 

  • Arbeit RD (1999) Laboratory procedures for the epidemiologic analysis of microorganisms. In: Murray PM, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds) Manual of clinical microbiology. ASM Press, Washington, DC

    Google Scholar 

  • Babalola OO (2003) Molecular techniques: an overview of methods for the detection of bacteria. Afr J Biotechnol 2:710–713. https://doi.org/10.5897/AJB2003.000-1127

    Article  CAS  Google Scholar 

  • Bhatta D, Villalba MM, Johnson CL et al (2012) Rapid detection of foot-and-mouth disease virus with optical microchip sensors. Proc Chem 6:2–10. https://doi.org/10.1016/j.proche.2012.10.124

    Article  CAS  Google Scholar 

  • Blears MJ, De Grandis SA, Lee H (1998) Amplified fragment length polymorphism (AFLP): review of the procedure and its applications. J Ind Microbiol Biotechnol. https://doi.org/10.1038/sj.jim.2900537

  • Boonmar S, Yingsakmongkon S, Songserm T (2007) Detection of Campylobacter in duck using standard culture method and multiplex polymerase chain reaction. Southeast Asian J Trop Med Public Health 38:728–731

    CAS  Google Scholar 

  • Braiek M, Rokbani KB, Chrouda A, Mrabet B, Bakhrouf A, Maaref A, Jaffrezic-Renault N (2012) An electrochemical immunosensor for detection of Staphylococcus aureus bacteria based on immobilization of antibodies on self-assembled monolayers-functionalized gold electrode. Biosensors 2:417–426. https://doi.org/10.3390/bios2040417

    Article  CAS  Google Scholar 

  • Caygill RL, Blair GE, Millner PA (2010) A review on viral biosensors to detect human pathogens. Anal Chim Acta. https://doi.org/10.1016/j.aca.2010.09.038

  • Chen SH, Wu VCH, Chung YC, Lin CS (2008) Using oligonuleotide functionlished Au nanoparticle to rudialy deleted food borne patogen on a Piezoelectric biosensor. J Microbiol Methods 73:7–17

    Article  CAS  Google Scholar 

  • Cho IH, Lee J, Kim L (2018) Current technologies of electrochemical immunosensor perspective on signal amplification. Sensor 18:207

    Article  CAS  Google Scholar 

  • Chu CS, Syu JJ (2017) Optical sensor for dual sensing of oxygen and carbon dioxide based on sensing films coated on filter paper. Appl Opt. https://doi.org/10.1364/AO.56.001225

  • Conroy PJ, Hearty S, Leonard P et al (2009) Antibody production, design and use for 11 biosensor-based applications. Semin Cell Dev Biol 20:10–26

    Article  CAS  Google Scholar 

  • Costa SLM, Santos VPS, Salgado AM et al (2012) Biosensors for contaminants monitoring in food and environment for human and environmental health. In: State of the art in biosensors - environmental and medical applications. https://doi.org/10.5772/55617

    Chapter  Google Scholar 

  • Damborsky P, Svitel J, Katrlik J (2016) Optical biosensors essays. Biochemist 60(1):91–100

    Google Scholar 

  • Denes AS, Lutze-Wallace CL, Cormier ML (1997) DNA fingerprinting of Campylobacter fetus using cloned constructs of ribosomal RNA and surface array protein genes. Vet Microbiol. https://doi.org/10.1016/S0378-1135(96)01273-4

  • Dingle KE, Colles FM, Falush D (2005) Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. J Clin Microbiol. https://doi.org/10.1128/JCM.43.1.340-347.2005

  • Donahue AC, Albitar M (2010) Antibodies in Biosensing. In: Zourob M (ed) Recognition 25 receptors in biosensors. Springer, New York

    Google Scholar 

  • Elnifro EM, Ashshi AM, Cooper RJ et al (2000) Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev. https://doi.org/10.1128/CMR.13.4.559-570.2000

  • Enright MC, Spratt BG (1999) Multilocus sequence typing. Trends Microbiol. https://doi.org/10.1016/S0966-842X(99)01609-1

  • Fan X, White I, Shopova S et al (2008) Sensitive optical biosensors for unlabelled targets: a review. Anal Chim Acta 620:8–26

    Article  CAS  Google Scholar 

  • Farber JM (1996) An introduction to the hows and whys of molecular typing. J Food Prot 59:1091–1101

    Article  CAS  Google Scholar 

  • Farre M, Brix R, Barcelo D (2005) Screening water for pollutants using biological techniques under European Union funding during last 10 year. Trends Anal Chem 24:532–545

    Article  CAS  Google Scholar 

  • Feldstine PT, Lienau AH, Forgey RL (1997) Assurance polyclonal enzyme immunoassay for detection of Listeria monocytogenes and related Listeria species in selected foods: collaborative study. J AOAC Int 80:775–790

    Article  Google Scholar 

  • Foley SL, Lynne AM, Nayak R (2009) Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2009.03.004

  • Fowler JM, Wong DKY, Brian HH, Heineman WR (2008) Recent developments in electrochemical immunoassays and immunosensors. In: Electrochemical sensors, biosensors and their biomedical applications. Elsevier, Amsterdam, pp 115–143, ISBN 9780123737380

    Chapter  Google Scholar 

  • Gong Q, Yang H, Dong Y, Wenchan Zhang W (2015) A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on electrochemically reduced graphene oxide. Anal Methods 7:2554–2562

    Article  CAS  Google Scholar 

  • Harris B (1999) Exploiting antibody-based technologies to manage environmental pollution. TIBTECH 17:290–296

    Article  CAS  Google Scholar 

  • Heid CA, Stevens J, Livak KJ et al (1996) Real time quantitative PCR. Genome Res 6(10):986–994

    Google Scholar 

  • Holford TRJ, Davis F, Higson SPJ (2012) Recent trends in antibody based sensors. Biosens Bioelectron 34:12–24

    Article  CAS  Google Scholar 

  • Huang KJ, Sun JY, Xu CX, Niu DJ, Xie WZ (2010) A disposable immunosensor based on gold colloid modified chitosan nanoparticles-entrapped carbon paste electrode. Microchim Acta 168:51–58

    Article  CAS  Google Scholar 

  • Jain S, Singh SR, Horn DW, Davis VA, Pillai S et al (2012) Development of an antibody functionalized carbon nanotube biosensor for foodborne bacterial pathogens. J Biosens Bioelectron S11:002. https://doi.org/10.4172/2155-6210.S11-002

    Article  Google Scholar 

  • Jonathan SD, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12):1239–1257

    Article  CAS  Google Scholar 

  • Joo J, Yim C, Kwon D, Jeon S et al (2007) A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes. Analyst 137(16):3609–3612

    Article  CAS  Google Scholar 

  • Karen L, Cox BS, Viswanath D et al (2012) Immunoassay methods. In: Markossian S, Sittampalam GS, Grossman A et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004, Bethesda, MD

    Google Scholar 

  • Koubova V, Brynda E, Karasova L (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens Actuators B Chem 74:100

    Article  CAS  Google Scholar 

  • Kuswandi B, Futra D, Lee HY (2017) Nanosensors for the detection of food contaminants. In: Nanotechnology applications in food: flavor, stability, nutrition and safety. Elsevier. https://doi.org/10.1016/B978-0-12-811942-6.00015-7

  • Lai JJ, Liang HF, Peng ZL et al (2011) Journal of Physics: Conference Series, 3rd international photonics and optoelectronics electronics meetings 276:012129

    Google Scholar 

  • Lee S, Choi B, Yi SM et al (2009) Characterization of microbial community during Asian dust events in Korea. Sci Total Environ 407(20):5308–5314

    Article  CAS  Google Scholar 

  • Liao JY, Li H (2010) Lateral flow immunodipstick for visual detection of aflatoxin B1 in food using immuno-nanoparticles composed of a silver core and a gold shell. Microchim Acta 171(3):289–295

    Article  CAS  Google Scholar 

  • Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304

    Article  CAS  Google Scholar 

  • Liu AL, Wang K, Weng HS (2012) Development of electrochemical DNA biosensors. TrAC Trends Anal Chem 37:101–111

    Article  CAS  Google Scholar 

  • Magistrado P, Carcia M, Raymundo A (2001) Isolation and polymerase chain reaction-base detection of Campylobacter jejuni and Campylobacter coli from poultry in Philippines. Int J Food Microbiol. https://doi.org/10.1016/S0168-1605(01)00537-2

  • Maiden MC, Bygraves JA, Feil E (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.95.6.3140

  • Malorny B, Paccassoni E, Fach P et al (2004) Diagnostic real-time PCR for detection of salmonella in food. Appl Environ Microbiol 70(12):7046–7052

    Article  CAS  Google Scholar 

  • Maraldo D, Mutharasan R (2007) 10-min assay for detecting Escherichia coli O157:H7 in ground beef samples using piezoelectric-excited millimeter-size cantilever sensors. J Food Prot. https://doi.org/10.4315/0362-028X-70.7.1670

  • Meng JH, Doyle MP (2002) Introduction. Microbiological food safety. Microbes Infect 4:395–397

    Article  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2007.02.001

  • Mheen TI, Kwon TW (1984) Effect of temperature and salt concentration on kimchi fermentation. Korean J Food Sci Technol 16:443e450

    Google Scholar 

  • Mitchell RJ, Gu MB (2004) An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-003-1418-0

  • Mohran ZS, Guerry P, Lior H (1996) Restriction fragment length polymorphism of flagellin genes of Campylobacter jejuni and/or C. coli isolates from Egypt. J Clin Microbiol 34:1216–1219

    Article  CAS  Google Scholar 

  • Multari RA, Cremers DA, Dupre JM et al (2012) The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains. Appl Opt 51(7):B57–B64

    Article  Google Scholar 

  • Mustafa F, Rabeay YA, Hassan ID et al (2017) Multifunctional nanotechnology-enabled sensors for rapid capture and detection of pathogens. Sensors. https://doi.org/10.3390/s17092121

  • Nachamkin I, Ung H, Patton CM (1996) Analysis of the HL and O serotypes of Campylobacter strains by the flagellin gene typing system. J Clin Microbiol 34:277–281

    Article  CAS  Google Scholar 

  • Naravaneni R, Jamil K (2005) Rapid detection of food-borne pathogens by using molecular techniques. J Med Microbiol 54:51–54

    Article  CAS  Google Scholar 

  • Newell DG, Frost JA, Duim B et al (2000) New developments in the subtyping of Campylobacters. In: Nachamkin I, Blaser M (eds) Campylobacter, 2nd edn. ASM, Washington, DC

    Google Scholar 

  • Obeid PJ, Christopoulos TK, Rabtree HJC et al (2003) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75(2):288–295

    Article  CAS  Google Scholar 

  • Oh BK, Lee W, Kim YK et al (2004) Surface plasmon resonace immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. J Biotechnol 111:1

    Article  CAS  Google Scholar 

  • Orazio PD (2011) Biosensors in clinical chemistry — 2011 update. Clinica Chimica Acta (Int J Clin Chem) 412(19–20):1749–1761

    Article  CAS  Google Scholar 

  • Otto A (1968) Excitation of non radiative surface plasma waves in silver by the method of frustrated total reflection. Z Physik 216:398–410

    Article  CAS  Google Scholar 

  • Picken MM, Picken RN, Han D et al (1997) A two year prospective study to compare culture and polymerase chain reaction amplification for the detection and diagnosis of Lyme borreliosis. Mol Pathol. https://doi.org/10.1136/mp.50.4.186

  • Pohanka M (2018) Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials (Basel). https://doi.org/10.3390/ma11030448

  • Qassem IM, Khadija S, Palchaudhuri S et al (2011) Pathogen identification with laser-induced breakdown spectroscopy: the effect of bacterial and biofluid specimen contamination. Appl Opt 51(7):B99–B107

    Google Scholar 

  • Rahimi E, Alian F, Alian F (2011) Prevalence and characteristic of Campylobacter species isolated from raw duck and goose meat in Iran. IPCBEE 9:171–175

    Google Scholar 

  • Rezk NA, Mansour H, Ghoneim HN, Rifaat MM (2012) Typing of Salmonella Typhi strains isolated from Egypt by RAPD PCR. 3 Biotech 2:17–25

    Article  Google Scholar 

  • Rosalie AM, David AC, Dupre JM et al (2010) The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains. Appl Spectrosc. https://doi.org/10.1366/000370210791666183

  • Rossen L, Norskov P, Holmstrom K (1992) Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA extraction solutions. Int J Food Microbiol 17(37):45

    Google Scholar 

  • Sails AD, Bolton FJ, Fox AJ (1998) A reverse transcriptase polymerase chain reaction assay for the detection of thermophilic Campylobacter spp. Mol Cell Probes. https://doi.org/10.1006/mcpr.1998.0184

  • Samuels AC, DeLucia FC, McNesby KL (2003) Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential. Appl Opt 42(30):6205–6209

    Article  CAS  Google Scholar 

  • Santonico M, Pennazza G, Romana PF et al (2017) A gas sensor device for oxygen and carbon dioxide detection. J Proc. https://doi.org/10.3390/proceedings1040447

  • Schofield CL, Field RA, Russell DA (2007) Glyconanoparticles for the colorimetric detection of cholera toxin. Anal Chem 79(4):1356–1361. https://doi.org/10.1021/ac061462j

    Article  CAS  Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. https://doi.org/10.1016/0092-8674(84)90301-5

  • Shankaran D, Gobi H, Miura N (2007) Recent advencements in surface plasmon resonance immunosensor for detection of small molecules of biomedical, food, enviromnetal interst. Sensors Actuators B Chem 121:158–177. https://doi.org/10.1016/j.snb.2006.09.014

    Article  CAS  Google Scholar 

  • Sharma VK (2006) Real-time reverse transcription-multiplex PCR for simultaneous and specific detection of rfbEand eae genes of Escherichia coli O157:H7. Mol Cell Probes. https://doi.org/10.1016/j.mcp.2006.03.001

  • Sharma A, Matharu Z, Sumana G, Solanki P, Kim CG, Malhotra BD (2010) Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films 519(2010):1213–1218

    Article  CAS  Google Scholar 

  • Shi XM, Long F, Suo B (2010) Molecular methods for the detection and characterization of foodborne pathogens. Pure Appl Chem. https://doi.org/10.1351/PAC-CON-09-02-07

  • Silbernagel K, Jechorek R, Kaufer AL et al (2005) Evaluation of the VIDAS Listeria immunoassay for the detetion of Listeria in foods using Demi–Fraser and Fraser enrichment broths, as modification of AOAC Official Method 999.06 (AOAC Official Method 2004.06). J AOAC Int 88:750–760

    Article  CAS  Google Scholar 

  • Solve M, Boel J, Norrung B (2000) Evaluation of a monoclonal antibody able to detect live Listeria monocytogenes and Listeria innocua. Int J Food Microbiol 57(3):219–224

    Article  CAS  Google Scholar 

  • Spratt BG (1999) Multilocus sequence typing: molecular typing of bacterial pathogens in an era of rapid DNA sequencing and the internet. Curr Opin Microbiol. https://doi.org/10.1016/S1369-5274(99)80054-X

  • Stanker LH, Scotcher MC, Hnasko R (2013) A monoclonal antibody based capture ELISA for botulinum neurotoxin serotype B: toxin detection in food. Toxin (Base) 5(11):2212–2228

    Article  CAS  Google Scholar 

  • Su YC, Yu CY, Lin JL, Lai JM, Chen SW, Tu PC, Chu C (2011) Emergence of Salmonella enterica Serovar Potsdam as a major serovar in waterfowl hatcheries and chicken eggs. Avian Dis. https://doi.org/10.1637/9420-060910-Reg

  • Subramanian A, Irudayaraj J, Ryan T (2006) A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E-coli O157: H7. Biosens Bioelectron 21:998–1006

    Article  CAS  Google Scholar 

  • Taitt CR, Shubin YS, Angel R et al (2004) Detection of Salmonella enterica serovar typhimurium by using a rapid, array-based immunosensor. Appl Environ Microbiol 70(1):152–158

    Article  CAS  Google Scholar 

  • Tobes R, Ramos JL (2005) REP code: defining bacterial identity in extragenic space. Environ Microbiol. https://doi.org/10.1111/j.1462-2920.2004.00704.x

  • Trindade PA, McCulloch JA, Oliveira GA et al (2003) Molecular techniques for MRSA typing: current issues and perspectives. Braz J Infect Dis 7:32–43

    Article  CAS  Google Scholar 

  • Urwin R, Maiden MC (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. https://doi.org/10.1016/j.tim.2003.08.006

  • Vargas GH, Hernandez JES, Hernandez SS et al (2018) Electrochemical biosensor: a solution to pollution detection with reference to environmental contaminants. Biosensors. https://doi.org/10.3390/bios8020029

  • Versalovic J, Kapur V, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. https://doi.org/10.1093/nar/19.24.6823

  • Viswanathan S, Wu L-C, Huang M-R, Ho J-A (2006) Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal Chem 78:1115–1121

    Article  CAS  Google Scholar 

  • Wang H, Ng LK, Farber JM (2000) Detection of Campylobacter jejuni and thermophilic Campylobacter spp. from foods by polymerase chain reaction. In: Spencer JFT, Ragout de Spencer AL (eds) Methods in biotechnology, food microbiology protocols, vol 14. Springer, pp 95–106

    Google Scholar 

  • Wassenaar TM, Newell DG (2000) Genotyping of Campylobacter spp.—a mini review. Appl Environ Microbiol. https://doi.org/10.1128/AEM.66.1.1-9.2000

  • Waswa J, Irudayaraj J, DebRoy C (2007) Direct detection of E-coli O157: H7 in selected food systems by a surface plasmon resonance biosensor. LWT - Food Sci Technol 40:187

    Article  CAS  Google Scholar 

  • Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    Article  CAS  Google Scholar 

  • Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. BioTechniques 39(1):75–85

    Article  CAS  Google Scholar 

  • Wood RW (1902) SPR method and its utilisation for low alcohols concentrations determination. Philos Mag. https://doi.org/10.1080/14786440209462857

  • Yeh C, Chang Y-H, Hong P (2011) A newly developed optical biochip for bacteria detection based on DNA hybridization. Sens Actuators B Chem 161:1168–1175. https://doi.org/10.1016/j.snb.2011.10.016

    Article  CAS  Google Scholar 

  • Yu J, Baudelet M, Boueri M et al (2010) Laser-induced plasma for detecting trace elements in biological materials. Newsroom. https://doi.org/10.1117/2.1200812.1367

  • Yun W, Li H, Chen S, Huang Y et al (2014) Aptamer-based rapid visual biosensing of melamine in whole milk. Eur Food Res Technol 238(6):989–995

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Purwar, S., Srivastava, S. (2021). Development of Modern Tools for Environmental Monitoring of Pathogens and Toxicant. In: Singh, A., Srivastava, S., Rathore, D., Pant, D. (eds) Environmental Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7493-1_9

Download citation

Publish with us

Policies and ethics