Skip to main content

Aquatic Microbial Oxygenic Phototrophs: A Short Treatise on Diverse Applications and the Future Biofuel Scenario

  • Chapter
  • First Online:
Environmental Microbiology and Biotechnology

Abstract

Man has relied upon microalgae ever since millennia. The importance of microalgal biotechnology as an exclusive niche in the industrial state of affairs is undeniably indisputable. Microalgae have been used to produce a wide variety of high value exploitable commercial products/metabolites such as antioxidants, carotenoids, vitamins, biomolecules (carbohydrates, proteins, and lipids), etc. Microalgae also hold great promise for the forthcoming biofuel industry. Microalgal biofuel are poised to be sustainable alternatives to conventional petro fuels; however, they need to overcome certain copious obstacles in order to compete in the international fuel market for an extensive commercial deployment. The scientific community is actively involved in research to establish microalgae as a biofuel podium. Progress made in this field is noteworthy, however, scientifically demanding and intellectually rigorous research seems to be the need of the hour. This article emphasizes on the non-energy and energy prospects of microalgal biomass with additional focus on the research gaps. This article aims to disseminate first-hand state-of-the-art information to help researchers, technocrats, venture capitalists, and policy makers in their futuristic endeavors pertaining to microalgal biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Qahtani WH, Binobead MA (2019) Anti-inflammatory, antioxidant and antihepatotoxic effects of Spirulina platensis against d-galactosamine induced hepatotoxicity in rats. Saudi J Biol Sci 26(4):647–652

    Article  CAS  Google Scholar 

  • Ashour M, Elshobary ME, El-Shenody R et al (2019) Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass Bioenergy 120:439–447

    Article  CAS  Google Scholar 

  • Bardhan P, Gupta K, Mandal M (2019) Microbes as bio-resource for sustainable production of biofuels and other bioenergy products. In: Gupta V (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 205–222

    Chapter  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology, vol 10. Cambridge University Press, New York

    Google Scholar 

  • Becker EW (2006) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  CAS  Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1987) Vitamins and fine chemicals from micro-algae. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York

    Google Scholar 

  • Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45(16):7060–7067

    Article  CAS  Google Scholar 

  • Busetti A, Thompson T, Tegazzini D et al (2015) Antibiofilm activity of the brown alga Halidrys siliquosa against clinically relevant human pathogens. Mar Drugs 13(6):3581–3605

    Article  CAS  Google Scholar 

  • Chisti Y (1980) An unusual hydrocarbon. J Ramsay Soc 27:24–26

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Colla LM, Oliveira Reinehr C, Reichert C et al (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol 98:1489–1493

    Article  CAS  Google Scholar 

  • Dawczynski C, Schaefer U, Leiterer M et al (2007) Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products. J Agric Food Chem 55:10470–10475

    Article  CAS  Google Scholar 

  • de Morais MG, de Freitas BC, Moraes L et al (2019) Liquid biofuels from microalgae: recent trends. In: Hosseini M (ed) Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts: technologies and approaches for scale-up and commercialization. Academic Press, Woodhead Publishing, Cambridge, pp 351–372

    Chapter  Google Scholar 

  • de Souza Leite L, Hoffmann MT, Daniel LA (2019) Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. J Water Process Eng 31:100821

    Article  Google Scholar 

  • de Souza MH, Calijuri ML, Assemany PP et al (2019) Soil application of microalgae for nitrogen recovery: a life-cycle approach. J Clean Prod 211:342–349

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51(12):2738–2749

    Article  CAS  Google Scholar 

  • Demirbas A, Demirbas MF (2010) Algae energy: algae as a new source of biodiesel. Springer, New York

    Book  Google Scholar 

  • D'Este M, Alvarado-Morales M, Angelidaki I (2017) Laminaria digitata as potential carbon source in heterotrophic microalgae cultivation for the production of fish feed supplement. Algal Res 26:1–7

    Article  Google Scholar 

  • Devi MA, Subbulakshmi G, Devi KM et al (1981) Studies on the proteins of mass-cultivated, blue-green alga (Spirulina platensis). J Agric Food Chem 29(3):522–525

    Article  CAS  Google Scholar 

  • Dewapriya P, Kim SK (2014) Marine microorganisms: an emerging avenue in modern nutraceuticals and functional foods. Food Res Int 56:115–125

    Article  CAS  Google Scholar 

  • Du Z, Li Y, Wang X et al (2011) Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol 102:4890–4896

    Article  CAS  Google Scholar 

  • Fabregas J, Herrero C (1990) Vitamin content of four marine microalgae. Potential use as source of vitamins in nutrition. J Ind Microbiol 5(4):259–263

    Article  CAS  Google Scholar 

  • Fedorov AS, Kosourov S, Ghirardi ML et al (2005) Continuous hydrogen photoproduction by Chlamydomonas reinhardtii. Appl Biochem Biotechnol 121(1–3):403–412

    Article  Google Scholar 

  • Ferrell J, Sarisky-Reed V (2010) National algal biofuels technology roadmap. US Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass program, Washington, DC

    Book  Google Scholar 

  • Gangl D, Zedler JA, Rajakumar PD et al (2015) Biotechnological exploitation of microalgae. J Exp Bot 66(22):6975–6990

    Article  CAS  Google Scholar 

  • Gastineau R, Turcotte F, Pouvreau JB et al (2014) Marennine, promising blue pigments from a widespread Haslea diatom species complex. Mar Drugs 12(6):3161–3189

    Article  CAS  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23(7–8):471–499

    Article  CAS  Google Scholar 

  • Gong Y, Hu H, Gao Y et al (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38(12):1879–1890

    Article  CAS  Google Scholar 

  • Grossman A (2016) Nutrient acquisition: the generation of bioactive vitamin B12 by microalgae. Curr Biol 26(8):R319–R321

    Article  CAS  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644

    Article  CAS  Google Scholar 

  • Halaj M, Matulová M, Å utovská M et al (2018) Chemico-physical and pharmacodynamic properties of extracellular Dictyosphaerium chlorelloides biopolymer. Carbohydr Polym 198:215–224

    Article  CAS  Google Scholar 

  • Hernández-García A, Velásquez-Orta SB, Novelo E et al (2019) Wastewater-leachate treatment by microalgae: biomass, carbohydrate and lipid production. Ecotoxicol Environ Saf 174:435–444

    Article  CAS  Google Scholar 

  • Hudek K, Davis LC, Ibbini J et al (2014) Commercial products from algae. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries. Springer, Dordrecht, pp 275–295

    Chapter  Google Scholar 

  • Islam MN, Alsenani F, Schenk PM (2017) Microalgae as a sustainable source of nutraceuticals. In: Microbial functional foods and Nutraceuticals. Wiley, Hoboken, pp 1–19

    Google Scholar 

  • Jochum M, Moncayo LP, Jo YK (2018) Microalgal cultivation for biofertilization in rice plants using a vertical semi-closed airlift photobioreactor. PLoS One 13:e0203456

    Article  CAS  Google Scholar 

  • Kalau N (2017) Economic importance of algae. http://news.algaeworld.org/2017/07/economic-importance-of-algae/. Accessed 10 May 2019

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 5:17–36

    CAS  Google Scholar 

  • Khan SA, Sharma GK, Malla FA et al (2019) Microalgae based biofertilizers: a biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. J Clean Prod 211:1412–1419

    Article  CAS  Google Scholar 

  • Kumar BR, Deviram G, Mathimani T et al (2019) Microalgae as rich source of polyunsaturated fatty acids. Biocatal Agric Biotechnol 17:583–588

    Article  Google Scholar 

  • Lardon L, Helias A, Sialve B et al (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6479

    Article  CAS  Google Scholar 

  • Lauritano C, Andersen JH, Hansen E et al (2016) Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci 3:68

    Article  Google Scholar 

  • Lee JB, Hayashi K, Hirata M (2006) Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biol Pharm Bull 29(10):2135–2139

    Article  CAS  Google Scholar 

  • Lin Y, Ge J, Ling H et al (2018) Isolation of a novel strain of Monoraphidium sp. and characterization of its potential for α-linolenic acid and biodiesel production. Bioresour Technol 267:466–472

    Article  CAS  Google Scholar 

  • Madeira MS, Cardoso C, Lopes PA (2017) Microalgae as feed ingredients for livestock production and meat quality: a review. Livest Sci 205:111–121

    Article  Google Scholar 

  • Malik FR, Ahmed S, Rizki YM (2001) Utilization of lignocellulosic waste for the preparation of nitrogenous biofertilizer. Pak J Biol Sci 4:1217–1220

    Article  Google Scholar 

  • Márquez-Escobar VA, Bañuelos-Hernández B, Rosales-Mendoza S (2018) Expression of a Zika virus antigen in microalgae: towards mucosal vaccine development. J Biotechnol 282:86–91

    Article  CAS  Google Scholar 

  • Marrez DA, Naguib MM, Sultan YY et al (2019) Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon 5(3):01404

    Article  Google Scholar 

  • Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10(3):248–268

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66(5):486–496

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  CAS  Google Scholar 

  • Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrol 71(2):855–863

    Article  CAS  Google Scholar 

  • Ogbonda KH, Aminigo RE, Abu GO (2007) Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour Technol 98:2207–2211

    Article  CAS  Google Scholar 

  • Pan P, Hu C, Yang W et al (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 101(12):4593–4599

    Article  CAS  Google Scholar 

  • Peng J, Yuan JP, Wu CF et al (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9(10):1806–1828

    Article  CAS  Google Scholar 

  • Pourmir A, Noor-Mohammadi S, Johannes TW (2013) Production of xylitol by recombinant microalgae. J Biotechnol 165(3–4):178–183

    Article  CAS  Google Scholar 

  • Prestegard SK, Oftedal L, Coyne RT et al (2009) Marine benthic diatoms contain compounds able to induce leukemia cell death and modulate blood platelet activity. Mar Drugs 7(4):605–623

    Article  CAS  Google Scholar 

  • Priyadarshani I, Biswajit R (2012) Commercial and industrial applications of micro algae – a review. J Algal Biomass Util 3:89–100

    Google Scholar 

  • Rahman A, Miller CD (2017) Microalgae as a source of bioplastics. In: Rastogi RP, Pandey A, Madamwar D (eds) Algal green chemistry. Elsevier, Amsterdam, pp 121–138

    Chapter  Google Scholar 

  • Rammuni MN, Ariyadasa TU, Nimarshana PHV et al (2019) Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem 277:128–134

    Article  CAS  Google Scholar 

  • Rangel-YaguiCde O, Danesi ED, de Carvalho JC et al (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour Technol 92:133–141

    Article  CAS  Google Scholar 

  • Richard JR, Bruce CP (1994) Commercial applications of algae: opportunities and constraints. J Appl Phycol 6:93–98

    Article  Google Scholar 

  • Rizwan M, Mujtaba G, Memon SA et al (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev 92:394–404

    Article  Google Scholar 

  • Sajilata MG, Singhal RS, Kamat MY (2008) Fractionation of lipids and purification of ã-linolenic acid (GLA) from Spirulina platensis. Food Chem 109:580–586

    Article  CAS  Google Scholar 

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    Article  CAS  Google Scholar 

  • Sathasivam R, Radhakrishnan R, Hashem A et al (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26(4):709–722

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Schuelter AR, Kroumov AD, Hinterholz CL et al (2019) Isolation and identification of new microalgae strains with antibacterial activity on food-borne pathogens. Engineering approach to optimize synthesis of desired metabolites. Biochem Eng J 144:28–39

    Article  CAS  Google Scholar 

  • Sepulveda C, Gómez C, Bahraoui NE et al (2019) Comparative evaluation of microalgae strains for CO2 capture purposes. J CO2 Util 30:158–167

    Article  CAS  Google Scholar 

  • Sharma P, Sharma N (2017) Industrial and biotechnological applications of algae: a review. J Adv Plant Biol 1:2638–4469

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J et al (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. Natl Renew Energy Lab 328:1–294

    Google Scholar 

  • Shi R, Handler RM, David RS (2019) Life cycle assessment of novel technologies for algae harvesting and oil extraction in the renewable diesel pathway. Algal Res 37:248–259

    Article  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Song T, MÃ¥rtensson L, Eriksson T et al (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol Ecol 54:131–140

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Stolz P, Obermayer B (2005) Manufacturing microalgae for skin care. Cosmet Toilet 120:99–106

    Google Scholar 

  • Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States energy policy. Energ Policy 38:4897–4902

    Article  CAS  Google Scholar 

  • Suwal S, Bentahar J, Marciniak A et al (2019) Evidence of the production of galactooligosaccharide from whey permeate by the microalgae Tetradesmus obliquus. Algal Res 101470:39

    Google Scholar 

  • Tarento TD, McClure DD, Vasiljevski E et al (2018) Microalgae as a source of vitamin K1. Algal Res 36:77–87

    Article  Google Scholar 

  • TokuÅŸoglu Ö (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci 68(4):1144–1148

    Article  Google Scholar 

  • Tran T, Denimal E, Lafarge C (2019) Effect of high hydrostatic pressure on extraction of B-phycoerythrin from Porphyridium cruentum: use of confocal microscopy and image processing. Algal Res 38:101394

    Article  Google Scholar 

  • Usharani G, Saranraj P, Kanchana D (2012) Spirulina cultivation: a review. Int J Pharm Biol Sci Arch 3:1327–1341

    Google Scholar 

  • Wang M, Huo H, Arora S (2011) Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the US context. Energ Policy 39(10):5726–5736

    Article  CAS  Google Scholar 

  • Wang K, Brown RC, Homsy S et al (2013) Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresour Technol 127:494–499

    Article  CAS  Google Scholar 

  • Wayman C (1996) Handbook of bioethanol production and utilization. Taylor & Francis, Washington

    Google Scholar 

  • Xiao R, Li X, Leonard E et al (2019) Investigation on the effects of cultivation conditions, fed-batch operation, and enzymatic hydrolysate of corn stover on the astaxanthin production by Thraustochytrium striatum. Algal Res 39:101475

    Article  Google Scholar 

  • Xin Y, Shen C, She Y (2019) Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae. Mol Plant 12(4):474–488

    Article  CAS  Google Scholar 

  • Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36(1):30–44

    Article  CAS  Google Scholar 

  • Yadav G, Sen R (2017) Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production: recent technological advances in climate research. J CO2 Util 17:188–206

    Article  CAS  Google Scholar 

  • Zhang J, Liu L, Ren Y et al (2019) Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. Int J Biol Macromol 128:761–767

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phukan, M.M. et al. (2021). Aquatic Microbial Oxygenic Phototrophs: A Short Treatise on Diverse Applications and the Future Biofuel Scenario. In: Singh, A., Srivastava, S., Rathore, D., Pant, D. (eds) Environmental Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7493-1_7

Download citation

Publish with us

Policies and ethics