Skip to main content

In Perspective of Combining Chaotic Particle Swarm Optimizer and Gravitational Search Algorithm Based on Optimal Power Flow in Wind Renewable Energy

  • Conference paper
  • First Online:
Soft Computing Techniques and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1248))

Abstract

Optimizing the power flow is one of the recent and emerging problems need to solve immediately to enhance the power flow in any power system applications. To do this, various earlier researchers have used many artificial intelligence methods or optimization methods. The obtained results are not cost and time effective. Still the real-time power system applications need a solution with cost and time effective. This paper aimed to integrate the chaotic particle swarm optimizer (CPSO) and gravitational search algorithm to solve the OPF problems. The proposed methods are simulated in MATLAB software, tested on IEEE buses of 30 and 57, and the results are verified. From the obtained results, it is identified that the GSA method is concluded as better method for solving OPF problems in power system applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

NPV :

Number of voltage controlled buses

NPQ :

Number of PQ buses

NTL :

Number of transmission lines

P G :

Active power output of generators at PV bus

V minLi and V maxLi :

Minimum and maximum load voltage of ith unit

S li :

Apparent power flow of ith branch

\(cr_{1}\) and \(cr_{2}\):

Chaotic variables

V G :

Terminal voltages at generation bus bars

Q C :

Output of shunt VAR compensators

T :

Tap setting of the tap regulating transformers

Q minCi and Q maxCi :

Minimum and maximum \(V_{\text{ar}}\) injection limits of \(i{\text{th}}\) shunt capacitor

T mini and T maxi :

Minimum and maximum tap settings limits of ith transformer

S maxli :

Maximum apparent power flow limit of ith branch

x lim :

Limit value of the dependent variable x

G:

Initial value (G0) and time (t)

References

  1. Carpentier, J.: Optimal power flows. Int. J. Electr. Power Energy Syst. 1(1), 3–15 (1979)

    Article  Google Scholar 

  2. Dommel, H.W., Tinney, W.F.: Optimal power flow solutions. IEEE Trans. Power Appar. Syst. 87(10), 1866–1876 (1968)

    Article  Google Scholar 

  3. Momoh, J.A., Koessler, R.J., Bond, M.S., et al.: Challenges to optimal power flow. IEEE Trans. Power Syst. 12(1), 444–447 (1997)

    Article  Google Scholar 

  4. Sun, Y., Xinlin, Y., Wang, H.F.: Approach for optimal power flow with transient stability constraints. IEE Proc. Gener. Trans. Distrib. 151(1), 8–18 (2004)

    Article  Google Scholar 

  5. Sun, D.I., Ashley, B., Brewer, B., Hughes, A., Tinney, W.F.: Optimal power flow by Newton approach. IEEE Trans. Power Appar. Syst. 103(10), 2864–2880 (1984)

    Article  Google Scholar 

  6. Wei, H.H., Kubokawa, S.J., Yokoyama, R.: An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans. Power Syst. 13(3), 870–877 (1998)

    Article  Google Scholar 

  7. Abido, M.A.: Optimal power flow using tabu search algorithm. Electr. Power Compo. Syst. 30(5), 469–483 (2002)

    Article  Google Scholar 

  8. Yan, X., Quantana, V.H.: Improving an interior point based OPF by dynamic adjustments of step sizes and tolerances. IEEE Trans. Power Syst. 14(2), 709–717 (1999)

    Article  Google Scholar 

  9. Habiabollahzadeh, H., Luo, G.X., Semlyen, A.: Hydrothermal optimal power flow based on combined linear and nonlinear programming methodology. IEEE Trans. Power Appar. Syst. PWRS 4(2), 530–537 (1989)

    Article  Google Scholar 

  10. Burchet, R.C., Happ, H.H., Vierath, D.R.: Quadratically convergent optimal power flow. IEEE Trans. Power Appar. Syst. PAS 103, 3267–3276 (1984)

    Article  Google Scholar 

  11. Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993 II Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14(1), 105–111 (1999)

    Article  Google Scholar 

  12. Huneault, M., Galina, F.D.: A survey of the optimal power flow literature. IEEE Trans. Power Syst. 6(2), 762–770 (1991)

    Article  Google Scholar 

  13. Roy, P.K., Ghoshal, S.P., Thakur, S.S.: Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function. Expert Syst. Appl. 37, 8221–8228 (2010)

    Article  Google Scholar 

  14. Deveraj, D., Yegnanarayana, B.: Genetic algorithm based optimal power flow for security enhancement. IEE Proc. Gener. Transm. Distrib. 152(6), 899–905 (2005)

    Article  Google Scholar 

  15. Lai, L.L., Ma, J.T., Yokoyama, R., Zhao, M.: Improved genetic algorithms for optimal power flow under normal and contingent operation states. Int. J. Electr. Power Energy Syst. 19(5), 287–292 (1997)

    Article  Google Scholar 

  16. Abido, M.A.: Optimal power flow using particle swarm optimization. Electr. Power Energy Syst. 24, 563–571 (2002)

    Article  Google Scholar 

  17. Varadarajan, M., Swarup, K.S.: Solving multi-objective optimal power flow using differential evolution. IET Gener. Transm. Distrib. 2(5), 720–730 (2008)

    Article  Google Scholar 

  18. Bakirtzis, A.G., Biskas, P.N., Zoumas, C.E., Petridis, V.: Optimal power flow by enhanced genetic algorithm. IEEE Trans. Power Syst. 17(2), 229–236 (2002)

    Article  Google Scholar 

  19. Lee, K.Y.: Optimal reactive power planning using evolutionary algorithms: a comparative study for evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming. IEEE Trans. Power. Syst. 13(1), 101–108 (1998)

    Article  Google Scholar 

  20. Abido, M.A.: Optimal power flow using particle swarm optimization. Int. J. Electr. Power Energ. Syst. 24(7), 563–571 (2002)

    Article  Google Scholar 

  21. Esmin, A.A.A., Lambert-Torres, G., Zambroni de Souza, A.C.: A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans. Power Syst. 20(2), 859–866 (2005)

    Article  Google Scholar 

  22. Amanifar, O., Hamedani Golshan, M.E.: Optimal distributed generation placement and sizing for loss and THD reduction and voltage profile improvement. Tech. Phys. Prob. Eng. (IJTPE) 3(2) (2011)

    Google Scholar 

  23. Sanseverino, E.R., Di Silvestre, M.L., Ippolito, M.G., De Paola, A., LoRe, G.: An execution, monitoring and replanning approach for optimal energy management in microgrids. Energy 36(5), 3429–3436 (2011)

    Article  Google Scholar 

  24. Chen, C., Duan, S., Cai, T., Liu, B., Hu, G.: Smart energy management system for optimal microgrid economic operation. IET Renew. Power Gener. 5(3), 258–267 (2011)

    Article  Google Scholar 

  25. Moghaddam, A.A., Seifi, A., Niknam, T., Alizadeh Pahlavani, M.R.: Multi-objective operation managemen to farenewable MG (micro-grid) with back-up micro-turbine/fuel cell/ battery hybrid power source. Energy 36(11), 6490–6507 (2011)

    Article  Google Scholar 

  26. Sharma, S., Bhattacharjee, S., Bhattacharya, A.: Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid. IET Gener. Transm. Distrib. 10(3), 625–637 (2016)

    Article  Google Scholar 

  27. Madhad, B., Srairi, K., Bouktir, T.: Optimal power flow for large-scale power system with shunt FACTS using efficient parallel GA. Electr. Power Energ. Syst. 32, 507–517 (2010)

    Article  Google Scholar 

  28. Li, C., Zhou, J.: Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Convers. Manage. 52, 374–381 (2011)

    Article  Google Scholar 

  29. Zibanezhad, B., Zamanifar, K., Nematbakhsh, N., Mardukhi, F.: An approach for web services composition based on QoS and gravitational search algorithm. In: Proceedings of the Innovations in Information Technology Conference, pp. 340–344 (2010)

    Google Scholar 

  30. Hassanzadeh, HR., Rouhani, M.: A multi-objective gravitational search algorithm. In: Proceedings of the Communication Systems and Network Conference, pp. 7–12 (2010)

    Google Scholar 

  31. Balachandar, S.R., Kannan, K.: A meta-heuristic algorithm for set covering problem based on gravity. Int J Comput. Math. Sci. 4, 223–228 (2010)

    Google Scholar 

  32. Duman, S., Güvenç, U., Yörükeren, N.: Gravitational search algorithm for economic dispatch with valve-point effects. Int. Rev. Electr. Eng. 5(6), 2890–2895 (2010)

    Google Scholar 

  33. Ceylan, O., Ozdemir, A., Dag, H.: Gravitational search algorithm for post-outage bus voltage magnitude calculations. In: International Universities Power Engineering Conference, Wales (UK), 31 August–3 September (2010)

    Google Scholar 

  34. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: BGSA: Binary gravitational search algorithm. Nat. Comput. 9, 727–745 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A gravitational search algorithm. Inform. Sci. 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Shilaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shilaja, C. (2021). In Perspective of Combining Chaotic Particle Swarm Optimizer and Gravitational Search Algorithm Based on Optimal Power Flow in Wind Renewable Energy. In: Borah, S., Pradhan, R., Dey, N., Gupta, P. (eds) Soft Computing Techniques and Applications. Advances in Intelligent Systems and Computing, vol 1248. Springer, Singapore. https://doi.org/10.1007/978-981-15-7394-1_44

Download citation

Publish with us

Policies and ethics