Skip to main content

Metabolism of Carotenoids in Mammals

  • Chapter
  • First Online:
Carotenoids: Biosynthetic and Biofunctional Approaches

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1261))

Abstract

Pathways for xanthophyll metabolism have been proposed on the basis of several oxidation products of dietary xanthophylls detected in the tissues of fish, birds, and human subjects. No enzyme reaction had been characterized as responsible for the pathways until a mouse liver homogenate was found to oxidize the 3-hydroxy β-end of xanthophylls to a 3-oxo ε-end in the presence of a cofactor, NAD+. This oxidation consists of dehydrogenation to an unstable intermediate having a 3-oxo β-end group and the subsequent migration of a double bond. β,ε-Caroten-3′-one, a metabolite of β-cryptoxanthin, was found in human plasma, indicating that the same oxidative activity as that found in the mouse liver works in human tissues.

The oxidative cleavage of carotenoids is mediated by two dioxygenases: a central cleavage enzyme and an asymmetric cleavage enzyme. In mice, the latter enzyme was suggested to eliminate carotenoids in tissues, while in humans, this enzyme is inactivated, resulting in carotenoid accumulation. In this chapter, carotenoid metabolism in mammals is described in terms of the oxidation of functional groups and cleavage of the carbon skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert GI, Hoeller U, Schierle J, Neuringer M, Johnson EJ, Schalch W (2008) Metabolism of lutein and zeaxanthin in rhesus monkeys: identification of (3R,6′R)- and (3R,6′S)-3′-dehydro-lutein as common metabolites and comparison to humans. Comp Biochem Physiol B-Biochem Mol Biol 151(1):70–78

    Article  Google Scholar 

  • Amengual J, Lobo GP, Golczak M, Li HNM, Klimova T, Hoppel CL, Wyss A, Palczewski K, von Lintig J (2011) A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J 25(3):948–959. https://doi.org/10.1096/fj.10-173906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai A, Sugawara T, Ono H, Nagao A (2004) Biotransformation of fucoxanthinol into amarouciaxanthin A in mice and HepG2 cells: formation and cytotoxicity of fucoxanthin metabolites. Drug Metab Dispos 32(2):205–211

    Article  CAS  Google Scholar 

  • Asai A, Yonekura L, Nagao A (2008) Low bioavailability of dietary epoxyxanthophylls in humans. Br J Nutr 100:273–277

    Article  CAS  Google Scholar 

  • Berry SD, Davis SR, Beattie EM, Thomas NL, Burrett AK, Ward HE, Stanfield AM, Biswas M, Ankersmit-Udy AE, Oxley PE, Barnett JL, Pearson JF, van der Does Y, MacGibbon AHF, Spelman RJ, Lehnert K, Snell RG (2009) Mutation in bovine beta-carotene oxygenase 2 affects milk color. Genetics 182(3):923–926

    Article  CAS  Google Scholar 

  • Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134(1):257S–261S

    Article  CAS  Google Scholar 

  • dela Sena C, Riedl KM, Narayanasamy S, Curley RW, Schwartz SJ, Harrison EH (2014) The human enzyme that converts dietary provitamin A carotenoids to vitamin A is a dioxygenase. J Biol Chem 289(19):13661–13666

    Article  Google Scholar 

  • Etoh H, Utsunomiya Y, Komori A, Murakami Y, Oshima S, Inakuma T (2000) Carotenoids in human blood plasma after ingesting paprika juice. Biosci Biotechnol Biochem 64(5):1096–1098

    Article  CAS  Google Scholar 

  • Gerhauser C, Klimo K, Hummer W, Holzer J, Petermann A, Garreta-Rufas A, Bohmer FD, Schreier P (2009) Identification of 3-hydroxy-beta-damascone and related carotenoid-derived aroma compounds as novel potent inducers of Nrf2-mediated phase 2 response with concomitant anti-inflammatory activity. Mol Nutr Food Res 53(10):1237–1244

    Article  Google Scholar 

  • Goodwin TW (1984) Mammals, vol II Animals. The Biochemistry of the carotenoids. Chapman and Hall, London

    Book  Google Scholar 

  • Hartmann D, Thurmann PA, Spitzer V, Schalch W, Manner B, Cohn W (2004) Plasma kinetics of zeaxanthin and 3′-dehydro-lutein after multiple oral doses of synthetic zeaxanthin. Am J Clin Nutr 79(3):410–417

    Article  CAS  Google Scholar 

  • Holger S, Kurtzer R, Eisenreich W, Schwab W (2006) The carotenase AtCCD1 from Arabidopsis thaliana is a dioxygenase. J Biol Chem 281(15):9845–9851

    Article  Google Scholar 

  • Hudon J (1994) Biotechnological applications of research on animal pigmentation. Biotechnol Adv 12(1):49–69

    Article  CAS  Google Scholar 

  • Khachik F, Beecher GR, Goli MB, Lusby WR, Smith JC Jr (1992) Separation and identification of carotenoids and their oxidation products in the extracts of human plasma. Anal Chem 64(18):2111–2122

    Article  CAS  Google Scholar 

  • Kiefer C, Hessel S, Lampert JM, Vogt K, Lederer MO, Breithaupt DE, von Lintig J (2001) Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J Biol Chem 276(17):14110–14116

    Article  CAS  Google Scholar 

  • Kotake-Nara E, Asai A, Nagao A (2005) Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Lett 220(1):75–84

    Article  CAS  Google Scholar 

  • Leuenberger MG, Engeloch-Jarret C, Woggon W-D (2001) The reaction mechanism of the enzyme-catalyzed central cleavage of β -carotene to retinal. Angew Chem Int Ed 40(14):2613–2617

    Article  Google Scholar 

  • Li BX, Vachali PP, Gorusupudi A, Shen ZQ, Sharifzadeh H, Besch BM, Nelson K, Horvath MM, Frederick JM, Baehr W, Bernstein PS (2014) Inactivity of human beta,beta-carotene-9 ′, 10 ′-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment. Proc Natl Acad Sci U S A 111(28):10173–10178

    Article  CAS  Google Scholar 

  • Lian FZ, Wang XD (2008) Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int J Cancer 123(6):1262–1268

    Article  CAS  Google Scholar 

  • Lian FZ, Smith DE, Ernst H, Russell RM, Wang XD (2007) Apo-10′-lycopenoic acid inhibits lung cancer cell growth in vitro, and suppresses lung tumorigenesis in the A/J mouse model in vivo. Carcinogenesis 28(7):1567–1574

    Article  CAS  Google Scholar 

  • Lindqvist A, Sharvill J, Sharvill DE, Andersson S (2007) Loss-of-function mutation in carotenoid 15,15′-monooxygenase identified in a patient with hypercarotenemia and hypovitaminosis A(1-3). J Nutr 137(11):2346–2350

    Article  CAS  Google Scholar 

  • Lobo GP, Isken A, Hoff S, Babino D, von Lintig J (2012) BCDO2 acts as a carotenoid scavenger and gatekeeper for the mitochondrial apoptotic pathway. Development 139(16):2966–2977

    Article  CAS  Google Scholar 

  • LoPachin RM, Barber DS, Gavin T (2008) Molecular mechanisms of the conjugated alpha, beta-unsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases. Toxicol Sci 104(2):235–249. https://doi.org/10.1093/toxsci/kfm301

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332(2):392–397

    Article  CAS  Google Scholar 

  • Matsuno T (2001) Aquatic animal carotenoids. Fish Sci 67(5):771–783

    Article  CAS  Google Scholar 

  • Matsuno T, Hirono T, Ikuno Y, Maoka T, Shimizu M, Komori T (1986) Isolation of three new carotenoids and proposed metabolic pathways of carotenoids in hen’s egg yolk. Comp Biochem Physiol B 84(4):477–481

    Article  Google Scholar 

  • McGraw KJ, Hill GE, Stradi R, Parker RS (2001) The influence of carotenoid acquisition and utilization on the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and Northern cardinals (Cardinalis cardinalis). Physiol Biochem Zool 74(6):843–852

    Article  CAS  Google Scholar 

  • Mein JR, Dolnikowski GG, Ernst H, Russell RM, Wang XD (2011) Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and beta-cryptoxanthin by ferret carotene-9 ′,10 ′-monooxygenase. Arch Biochem Biophys 506(1):109–121

    Article  CAS  Google Scholar 

  • Murakami A, Takahashi D, Kinoshita T, Koshimizu K, Kim H, Yoshihiro A, Nakamura Y, Jiwajinda S, Terao J, Ohigashi H (2002) Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, pro-inflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the alpha, beta-unsaturated carbonyl group is a prerequisite. Carcinogenesis 23(5):795–802

    Article  CAS  Google Scholar 

  • Nagao A, Maoka T, Ono H, Kotake-Nara E, Kobayashi M, Tomita M (2015) A 3-hydroxy beta-end group in xanthophylls is preferentially oxidized to a 3-oxo epsilon-end group in mammals. J Lipid Res 56(2):449–462

    Article  CAS  Google Scholar 

  • Nishino H, Murakoshi M, Ii T, Takemura M, Kuchide M, Kanazawa M, Mou XY, Wada S, Masuda M, Ohsaka Y, Yogosawa S, Satomi Y, Jinno K (2002) Carotenoids in cancer chemoprevention. Cancer Metastasis Rev 21(3–4):257–264

    Article  CAS  Google Scholar 

  • Park JS, Chew BP, Wong TS (1998) Dietary lutein absorption from marigold extract is rapid in BALB/c mice. J Nutr 128(10):1802–1806

    Article  CAS  Google Scholar 

  • Richard B, Conrad Hans E (1979) Search for the presence in egg yolk, in flowers of Caltha palustris and in autumn leaves of 3′-epilutein (=(3R,3′S,6′R)-β,ε-carotene-3,3′-diol) and 3′,O-didehydrolutein (=(3R,6′R)-3-hydroxy-β,ε-carotene-3′-one). Helv Chim Acta 62(8):2817–2824

    Article  Google Scholar 

  • Sugawara T, Baskaran V, Tsuzuki W, Nagao A (2002) Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by Caco-2 human intestinal cells and mice. J Nutr 132(5):946–951

    Article  CAS  Google Scholar 

  • Sui X, Golczak M, Zhang J, Kleinberg KA, von Lintig J, Palczewski K, Kiser PD (2015) Utilization of dioxygen by carotenoid cleavage oxygenases. J Biol Chem 290(51):30212–30223. https://doi.org/10.1074/jbc.M115.696799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurmann PA, Schalch W, Aebischer JC, Tenter U, Cohn W (2005) Plasma kinetics of lutein, zeaxanthin, and 3 ′-dehydro-lutein after multiple oral doses of a lutein supplement. Am J Clin Nutr 82(1):88–97

    Article  Google Scholar 

  • Wang TTY, Edwards AJ, Clevidence BA (2013) Strong and weak plasma response to dietary carotenoids identified by cluster analysis and linked to beta-carotene 15,15′-monooxygenase 1 single nucleotide polymorphisms. J Nutr Biochem 24(8):1538–1546

    Article  CAS  Google Scholar 

  • Yonekura L, Kobayashi M, Terasaki M, Nagao A (2010) Keto-carotenoids are the major metabolites of dietary lutein and fucoxanthin in mouse tissues. J Nutr 140(10):1824–1831

    Article  CAS  Google Scholar 

  • Zeng S, Furr HC, Olson JA (1992) Metabolism of carotenoid analogs in humans. Am J Clin Nutr 56(2):433–439

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Nagao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagao, A. (2021). Metabolism of Carotenoids in Mammals. In: Misawa, N. (eds) Carotenoids: Biosynthetic and Biofunctional Approaches. Advances in Experimental Medicine and Biology, vol 1261. Springer, Singapore. https://doi.org/10.1007/978-981-15-7360-6_6

Download citation

Publish with us

Policies and ethics